SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tasnadi Ferenc) "

Sökning: WFRF:(Tasnadi Ferenc)

  • Resultat 1-50 av 84
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrikosov, Igor, et al. (författare)
  • Phase Stability and Elasticity of TiAlN
  • 2011
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 4:9, s. 1599-1618
  • Tidskriftsartikel (refereegranskat)abstract
    • We review results of recent combined theoretical and experimental studies of Ti1−xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place. The strong dependence of the elastic properties and sound wave anisotropy on the Al-content offers detailed understanding of the spinodal decomposition and age hardening in Ti1−xAlxN alloy films and multilayers. TiAlN/TiN multilayers can further improve the hardness and thermal stability compared to TiAlN since they offer means to influence the kinetics of the favorable spinodal decomposition and suppress the detrimental transformation to w-AlN. Here, we show that a 100 degree improvement in terms of w-AlN suppression can be achieved, which is of importance when the coating is used as a protective coating on metal cutting inserts.
  •  
2.
  • Alling, Björn, et al. (författare)
  • Configurational disorder effects on adatom mobilities on Ti1-xAlxN(001) surfaces from first principles
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : american physical society. - 1098-0121 .- 1550-235X. ; 85:24, s. 245422-
  • Tidskriftsartikel (refereegranskat)abstract
    • We use metastable NaCl-structure Ti0.5Al0.5N alloys to probe effects of configurational disorder on adatom surface diffusion dynamics which control phase stability and nanostructural evolution during film growth. First-principles calculations were employed to obtain energy potential maps of Ti and Al adsorption on an ordered TiN(001) reference surface and a disordered Ti0.5Al0.5N(001) solid-solution surface. The energetics of adatom migration on these surfaces are determined and compared to isolate effects of configurational disorder. The results show that alloy surface disorder dramatically reduces Ti adatom mobilities. Al adatoms, in sharp contrast, experience only small disorder-induced differences in migration dynamics.
  •  
3.
  • Bock, Florian, et al. (författare)
  • Active learning with moment tensor potentials to predict material properties: Ti0.5Al0.5N at elevated temperature
  • 2024
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 42:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal nitride alloys possess exceptional properties, making them suitable for cutting applications due to their inherent hardness or as protective coatings due to corrosion resistance. However, the computational demands associated with predicting these properties using ab initio methods can often be prohibitively high at the conditions of their operation at cutting tools, that is, at high temperatures and stresses. Machine learning approaches have been introduced into the field of materials modeling to address the challenge. In this paper, we present an active learning workflow to model the properties of our benchmark alloy system cubic B1 Ti0.5Al0.5N at temperatures up to 1500 K. With a minimal requirement of prior knowledge about the alloy system for our workflow, we train a moment tensor potential (MTP) to accurately model the material's behavior over the entire temperature range and extract elastic and vibrational properties. The outstanding accuracy of MTPs with relatively little training data demonstrates that the presented approach is highly efficient and requires about two orders of magnitude less computational resources than state-of-the-art ab initio molecular dynamics.
  •  
4.
  • Bock, Florian, 1994- (författare)
  • Combining ab‐initio and machine learning techniques for theoretical simulations of hard nitrides at extreme conditions
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis I focus on combining the high accuracy of first-principles calculations with modern machine learning methods to make large scale investigations of industrially relevant nitride systems reliable and computationally viable. I study the electronic, thermodynamic and mechanical properties of two families of compounds: Ti1−xAlxN alloys at the operational conditions of industrial cutting tools and ReNx systems at crushing pres-sures comparable to inner earth core conditions. Standard first-principles simulations of materials are usually carried out at zero temperature and pressure, and while many state-of-the-art approaches can take these effects into account, they are usually accompanied by a substantial increase in computational demand. In this thesis I therefore explore the possiblities of studying materials at extreme conditions using machine learning methods with extraordinary efficiency without loss of calculational accuracy. Ti1−xAlxN alloy coatings exhibit exceptional properties due to their inherent ability to spinodally decompose at elevated temperature, leading to age-hardening. Since the cubic B1 phase of Ti1−xAlxN is well-studied, available high-accuracy first-principles data served as both a benchmark and data set on which to train a machine learning interatomic potential. Using the reliable moment tensor potentials, an investigation of the accuracy and efficiency of this approach was carried out in a machine learning study. Building upon the success of this technique, implementation of a learning-on-the-fly (active learning) methodology into a workflow to determine accurate material properties with minimal prior knowledge showed great promise, while maintaining a computational demand up to two orders of magnitude lower than comparable first-principles approaches. Investigations of properties of industrially lesser desired, but sometimes present hexagonal alloy phases of Ti1−xAlxN are also included in this thesis, since knowledge and understanding of all competing phases can help guide development toward improving cutting tool lifetime and performance. Furthermore, while w-Ti1−xAlxN may not be able to compete with its cubic counterpart in terms of hardness, it shows promise for other applications due to its electronic and elastic properties. Metastable ReNx phases are high energy materials due to their covalent N-N and Re-N bonds, leading to exceptional mechanical and electronic properties. Just like diamond, the hardest and arguably most famous metastable mate-rial naturally occurring on earth, they are stabilized by extreme pressures and high temperatures, but can be quenched to ambient conditions. Understanding the formation and existence of these non-equilibrium compounds may hold the key to unlocking a new generation of hard materials. In this thesis, all currently known phases of ReNx compounds have been investigated, encompassing both experimentally observed and theoretically suggested structures. Investigations of the convex hulls across a broad pressure range were carried out, coupled with calculations of phonons in the proposed crystals to determine both energetic and dynamical stability. Overall, the studies included in this thesis focused mainly on investigation of the ground state of ReN2 at higher pressure, where experimental results were deviating from earlier theoretical predictions. Additional research focused on specifically exploring properties and stability of novel ReN6 at synthesis conditions using the active learning workflow to train an interatomic potential. 
  •  
5.
  • Bykov, M., et al. (författare)
  • Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-nitrogen compounds have been considered as potential high energy density materials for a long time due to the large number of energetic N-N or N=N bonds. In most cases high nitrogen content and stability at ambient conditions are mutually exclusive, thereby making the synthesis of such materials challenging. One way to stabilize such compounds is the application of high pressure. Here, through a direct reaction between Fe and N-2 in a laser-heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction. Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a marcasite structure type and features covalently bonded dinitrogen units in its crystal structure. FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N-4(2-)](n) units. Based on results of structural studies and theoretical analysis, [N-4(2-)](n) units in this compound reveal catena-poly[tetraz-1-ene-1,4-diyl] anions.
  •  
6.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN8·xN2 with Conjugated Polymeric Nitrogen Chains
  • 2018
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 57:29, s. 9048-9053
  • Tidskriftsartikel (refereegranskat)abstract
    • A nitrogen-rich compound, ReN(8)xN(2), was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser-heated diamond anvil cell. Single-crystal X-ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular-shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100GPa, ReN(8)xN(2) is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [-N=N-] that constitute the framework have not been previously observed in any compound. Abinitio calculations on ReN(8)xN(2) provide strong support for the experimental results and conclusions.
  •  
7.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN4 Polymorph
  • 2021
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:17
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN4. A triclinic phase of beryllium tetranitride tr-BeN4 was synthesized from elements at similar to 85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated pi systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
  •  
8.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of Metal-Inorganic Frameworks Hf4N20 center dot N-2, WN8 center dot N-2, and Os5N28 center dot 3 N-2 with Polymeric Nitrogen Linkers
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:26, s. 10321-10326
  • Tidskriftsartikel (refereegranskat)abstract
    • Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal-inorganic frameworks Hf4N20 center dot N2, WN 8 center dot N2, and Os5N28 center dot 3N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN 8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catenapoly[tetraz-1-ene-1,4-diyl] nitrogen chains [-N-N-N=N-](infinity.)
  •  
9.
  • Bykov, Maxim, et al. (författare)
  • High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re-2(N-2)(N)(2) stable at ambient conditions
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure synthesis in diamond anvil cells can yield unique compounds with advanced properties, but often they are either unrecoverable at ambient conditions or produced in quantity insufficient for properties characterization. Here we report the synthesis of metallic, ultraincompressible (K-0 = 428(10) GPa), and very hard (nanoindentation hardness 36.7(8) GPa) rhenium nitride pernitride Re-2(N-2)(N)(2). Unlike known transition metals pernitrides Re-2(N-2)(N)(2) contains both pernitride N-2(4-) and discrete N3- anions, which explains its exceptional properties. Re-2(N-2)(N)(2) can be obtained via a reaction between rhenium and nitrogen in a diamond anvil cell at pressures from 40 to 90 GPa and is recoverable at ambient conditions. We develop a route to scale up its synthesis through a reaction between rhenium and ammonium azide, NH4N3, in a large-volume press at 33 GPa. Although metallic bonding is typically seen incompatible with intrinsic hardness, Re-2(N-2)(N)(2) turned to be at a threshold for superhard materials.
  •  
10.
  • Bykov, Maxim, et al. (författare)
  • Realization of an Ideal Cairo Tessellation in Nickel Diazenide NiN2: High-Pressure Route to Pentagonal 2D Materials
  • 2021
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 15:8, s. 13539-13546
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the studied two-dimensional (2D) materials are based on highly symmetric hexagonal structural motifs. In contrast, lower-symmetry structures may have exciting anisotropic properties leading to various applications in nano-electronics. In this work we report the synthesis of nickel diazenide NiN2 which possesses atomic-thick layers comprised of Ni2N3 pentagons forming Cairo-type tessellation. The layers of NiN2 are weakly bonded with the calculated exfoliation energy of 0.72 J/m(2), which is just slightly larger than that of graphene. The compound crystallizes in the space group of the ideal Cairo tiling (P4/mbm) and possesses significant anisotropy of elastic properties. The single-layer NiN2 is a direct-band-gap semiconductor, while the bulk material is metallic. This indicates the promise of NiN2 to be a precursor of a pentagonal 2D material with a tunable direct band gap.
  •  
11.
  • Darakchieva, Vanya, et al. (författare)
  • Lattice parameters, deviations from Vegards rule, and E-2 phonons in InAlN
  • 2008
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 93:26, s. 261908-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lattice parameters of InxAl1-xN in the whole compositional range are studied using first-principle calculations. Deviations from Vegards rule are obtained via the bowing parameters, delta(a)=0.0412 +/- 0.0039 A and delta(c)=-0.060 +/- 0.010 A, which largely differ from previously reported values. Implications of the observed deviations from Vegards rule on the In content extracted from x-ray diffraction are discussed. We also combine these results with x-ray diffraction and Raman scattering studies on InxAl1-xN nanocolumns with 0.627 <= x <= 1 and determine the E-2 phonon frequencies versus In composition in the scarcely studied In-rich compositional range.
  •  
12.
  • Dubrovinsky, Leonid, et al. (författare)
  • Materials synthesis at terapascal static pressures
  • 2022
  • Ingår i: Nature. - London, United Kingdom : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 605:7909, s. 274-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions(1,2). Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell(3), producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.
  •  
13.
  • Ekholm, Marcus, et al. (författare)
  • Assessing the SCAN functional for itinerant electron ferromagnets
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Density functional theory is a standard model for condensed-matter theory and computational material science. The accuracy of density functional theory is limited by the accuracy of the employed approximation to the exchange-correlation functional. Recently, the so-called strongly constrained appropriately normed (SCAN) [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] functional has received a lot of attention due to promising results for covalent, metallic, ionic, as well as hydrogen- and van der Waals-bonded systems alike. In this work, we focus on assessing the performance of the SCAN functional for itinerant magnets by calculating basic structural and magnetic properties of the transition metals Fe, Co, and Ni. We find that although structural properties of bcc-Fe seem to be in good agreement with experiment, SCAN performs worse than standard local and semilocal functionals for fcc-Ni and hcp-Co. In all three cases, the magnetic moment is significantly overestimated by SCAN, and the 3d states are shifted to lower energies, as compared to experiments.
  •  
14.
  • Ekholm, Marcus, et al. (författare)
  • Supercell Calculations of Hyperfine Interactions in Transition-Metal Alloys
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We have performed calculations for the hyperfine field in the disordered Fe0.5Ni0.5 alloy using supercells with up to 864 atoms. The computational scheme is based on exact muffin-tin orbitals and the locally self-consistent Green’s function formalism, which scales linearly with the number of atoms in the supercell. This scheme allows local environment effects, such as chemical and magnetic environment, and short-range order, to be explicitly included. Supercell calculations for Fe-Ni show that while the average fields coincides with that obtained using the coherent potential approximation, there is a significant distribution of the hyperfine fields depending on the local environment. The fields of Fe and Ni show qualitatively different behaviour as a function of the on-site magnetic moment, but scale linearly with the average magnetic moment in the first coordination shell.
  •  
15.
  • Ektarawong, Annop, et al. (författare)
  • Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics
  • 2016
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 144:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1−x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1−x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational  disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young’s and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1−x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1−x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.
  •  
16.
  • Feng, Qingguo, et al. (författare)
  • Topological transitions of the Fermi surface of osmium under pressure: an LDA plus DMFT study
  • 2017
  • Ingår i: New Journal of Physics. - : IOP PUBLISHING LTD. - 1367-2630. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of pressure on the electronic structure of Os has attracted substantial attention recently due to reports on isostructural electronic transitions in this metal. Here, we theoretically investigate the Fermi surface of Os from ambient to high pressure, using density functional theory combined with dynamical mean field theory. Weprovide a detailed discussion of the calculated Fermi surface and its dependence on the level of theory used for the treatment of the electron-electron interactions. Although we confirm that Os can be classified as weakly correlated metal, the inclusion of local quantum fluctuations between 5d electrons beyond the local density approximation explains the most recent experimental reports regarding the occurrence of electronic topological transitions in Os.
  •  
17.
  • Ghafoor, Naureen, et al. (författare)
  • Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers
  • 2014
  • Ingår i: APL Materials. - : American Institute of Physics. - 2166-532X. ; 2:4, s. 046106-
  • Tidskriftsartikel (refereegranskat)abstract
    • Isostructural stability of B1-NaCl type SiN on (001) and (111) oriented ZrN surfaces is studied theoretically and experimentally. The ZrN/SiNx/ZrN superlattices with modulation wavelength of 3.76 nm (dSiNx similar to 0.4 nm) were grown by dc-magnetron sputtering on MgO(001) and MgO(111). The results indicate that 0.4 nm thin SiNx layers utterly influence the preferred orientation of epitaxial growth: on MgO(001) cube-on-cube epitaxy of ZrN/SiNx superlattices were realized whereas multilayers on MgO(111) surface exhibited an unexpected 002 texture with a complex fourfold 90 degrees-rotated in-plane preferred orientation. Density functional theory calculations confirm stability of a (001) interface with respect to a (111) which explains the anomaly.
  •  
18.
  • Glazyrin, K., et al. (författare)
  • Importance of Correlation Effects in hcp Iron Revealed by a Pressure-Induced Electronic Topological Transition
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 110:11, s. 117206-
  • Tidskriftsartikel (refereegranskat)abstract
    • We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mossbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.
  •  
19.
  • Gubaev, Konstantin, et al. (författare)
  • Finite-temperature interplay of structural stability, chemical complexity, and elastic properties of bcc multicomponent alloys from ab initio trained machine-learning potentials
  • 2021
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • An active learning approach to train machine-learning interatomic potentials (moment tensor potentials) for multicomponent alloys to ab initio data is presented. Employing this approach, the disordered body-centered cubic (bcc) TiZrHfTax system with varying Ta concentration is investigated via molecular dynamics simulations. Our results show a strong interplay between elastic properties and the structural. phase stability, strongly affecting the mechanical properties. Based on these insights we systematically screen composition space for regimes where elastic constants show little or no temperature dependence (elinvar effect).
  •  
20.
  • Holec, D., et al. (författare)
  • Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grainscale interactions
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 90:18, s. 184106-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1-x Al-x N system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0], [0 1 0], and [0 0 1] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x approximate to 0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Youngs modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Youngs modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Youngs modulus data of cubic Zr1-x Al-x N contains also the evaluation of the texture typical for thin films.
  •  
21.
  • Johansson, Erik, et al. (författare)
  • The effect of strain and pressure on the electron-phonon coupling and superconductivity in MgB2-Benchmark of theoretical methodologies and outlook for nanostructure design
  • 2022
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 131:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Different theoretical methodologies are employed to investigate the effect of hydrostatic pressure and anisotropic stress and strain on the superconducting transition temperature ( T-c) of MgB2. This is done both by studying Kohn anomalies in the phonon dispersions alone and by explicit calculation of the electron-phonon coupling. It is found that increasing pressure suppresses T-c in all cases, whereas isotropic and anisotropic strain enhances the superconductivity. In contrast to trialed epitaxial growth that is limited in the amount of achievable lattice strain, we propose a different path by co-deposition with ternary diborides that thermodynamically avoid mixing with MgB2. This is suggested to promote columnar growth that can introduce strain in all directions.
  •  
22.
  • Laniel, Dominique, et al. (författare)
  • Front Cover: Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′-P3N5, δ-P3N5 and PN2 (Chem. Eur. J. 62/2022)
  • 2022
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 28:62
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • For the last 30 years, the lack of a binary phosphorus nitride containing PN6 octahedra formed a scientific chasm between carbon-group and oxygen-group nitrides, both featuring a variety of solids with XN6 units (X being a non-metal element). Now, the discovery of the δ-P3N5 and PN2 phosphorus nitrides—formed under high pressure and both composed of the elusive PN6 octahedron—builds a long-sought-after bridge between these two groups of nitrides. More information can be found in the Research Article by D. Laniel, F. Trybel, and co-workers (DOI: 10.1002/chem.202201998).
  •  
23.
  • Laniel, Dominique, et al. (författare)
  • Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′‐P3N5, δ‐P3N5 and PN2
  • 2022
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 28:62
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. delta-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K-0=322 GPa for delta-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, delta-P3N5 undergoes a transformation into a novel alpha -P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of alpha -P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.
  •  
24.
  • Laniel, Dominique, et al. (författare)
  • Synthesis of Ultra‐Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra
  • 2024
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3N4, hP126-C3N4, and tI24-CN2, in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.
  •  
25.
  • Levämäki, Henrik, et al. (författare)
  • HADB: A materials-property database for hard-coating alloys
  • 2023
  • Ingår i: Thin Solid Films. - : ELSEVIER SCIENCE SA. - 0040-6090 .- 1879-2731. ; 766
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-driven approaches are becoming increasingly valuable for modern science, and they are making their way into industrial research and development (R&D). Supervised machine learning of statistical models can utilize databases of materials parameters to speed up the exploration of candidate materials for experimental synthesis and characterization. In this paper we introduce the HADB database, which contains properties of industrially relevant chemically disordered hard-coating alloys, focusing on their thermodynamic, elastic and mechanical properties. We present the technical implementations of the database infrastructure including support for browse, query, retrieval, and API access through the OPTIMADE API to make this data findable, accessible, interoperable, and reusable (FAIR). Finally, we demonstrate the usefulness of the database by training a graph -based machine learning (ML) model to predict elastic properties of hard-coating alloys. The ML model is shown to predict bulk and shear moduli for out out-of-sample alloys with less than 6 GPa mean average error.
  •  
26.
  • Levämäki, Henrik, et al. (författare)
  • Predicting elastic properties of hard-coating alloys using ab-initio and machine learning methods
  • 2022
  • Ingår i: npj Computational Materials. - : NATURE PORTFOLIO. - 2057-3960. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Accelerated design of hard-coating materials requires state-of-the-art computational tools, which include data-driven techniques, building databases, and training machine learning models. We develop a heavily automated high-throughput workflow to build a database of industrially relevant hard-coating materials, such as binary and ternary nitrides. We use the high-throughput toolkit to automate the density functional theory calculation workflow. We present results, including elastic constants that are a key parameter determining mechanical properties of hard-coatings, for X1-xYxN ternary nitrides, where X,Y ∈ {Al, Ti, Zr, Hf} and fraction . We also explore ways for machine learning to support and complement the designed databases. We find that the crystal graph convolutional neural network trained on ordered lattices has sufficient accuracy for the disordered nitrides, suggesting that existing databases provide important data for predicting mechanical properties of qualitatively different types of materials, in our case disordered hard-coating alloys.
  •  
27.
  • Liang, Akun, et al. (författare)
  • High-Pressure Synthesis of Ultra-Incompressible, Hard and Superconducting Tungsten Nitrides
  • 2024
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal nitrides, particularly those of 5d metals, are known for their outstanding properties, often relevant for industrial applications. Among these metal elements, tungsten is especially attractive given its low cost. In this high-pressure investigation of the W-N system, two novel ultra-incompressible tungsten nitride superconductors, namely W2N3 and W3N5, are successfully synthesized at 35 and 56 GPa, respectively, through a direct reaction between N2 and W in laser-heated diamond anvil cells. Their crystal structure is determined using synchrotron single-crystal X-ray diffraction. While the W2N3 solid's sole constituting nitrogen species are N3- units, W3N5 features both discrete N3- as well as N24- pernitride anions. The bulk modulus of W2N3 and W3N5 is experimentally determined to be 380(3) and 406(7) GPa, and their ultra-incompressible behavior is rationalized by their constituting WN7 polyhedra and their linkages. Importantly, both W2N3 and W3N5 are recoverable to ambient conditions and stable in air. Density functional theory calculations reveal W2N3 and W3N5 to have a Vickers hardness of 30 and 34 GPa, and superconducting transition temperatures at ambient pressure (50 GPa) of 11.6 K (9.8 K) and 9.4 K (7.2 K), respectively. Additionally, transport measurements performed at 50 GPa on W2N3 corroborate with the calculations. Two recoverable tungsten nitrides, namely W2N3 and W3N5, are synthesized using laser-heated diamond anvil cells. Both compounds exhibit a high bulk modulus, hardness, and superconducting transition temperature. image
  •  
28.
  • Lin, Shuyao, et al. (författare)
  • Machine-learning potentials for nanoscale simulations of tensile deformation and fracture in ceramics
  • 2024
  • Ingår i: npj Computational Materials. - : NATURE PORTFOLIO. - 2057-3960. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Machine-learning interatomic potentials (MLIPs) offer a powerful avenue for simulations beyond length and timescales of ab initio methods. Their development for investigation of mechanical properties and fracture, however, is far from trivial since extended defects-governing plasticity and crack nucleation in most materials-are too large to be included in the training set. Using TiB2 as a model ceramic material, we propose a training strategy for MLIPs suitable to simulate mechanical response of monocrystals until failure. Our MLIP accurately reproduces ab initio stresses and fracture mechanisms during room-temperature uniaxial tensile deformation of TiB2 at the atomic scale ( approximate to 103 atoms). More realistic tensile tests (low strain rate, Poisson's contraction) at the nanoscale ( approximate to 104-106 atoms) require MLIP up-fitting, i.e., learning from additional ab initio configurations. Consequently, we elucidate trends in theoretical strength, toughness, and crack initiation patterns under different loading directions. As our MLIP is specifically trained to modelling tensile deformation, we discuss its limitations for description of different loading conditions and lattice structures with various Ti/B stoichiometries. Finally, we show that our MLIP training procedure is applicable to diverse ceramic systems. This is demonstrated by developing MLIPs which are subsequently validated by simulations of uniaxial strain and fracture in TaB2, WB2, ReB2, TiN, and Ti2AlB2.
  •  
29.
  • Lind, Hans, et al. (författare)
  • High temperature phase decomposition in TixZryAlzN
  • 2014
  • Ingår i: AIP Advances. - : American Institute of Physics (AIP). - 2158-3226. ; 4:12, s. 127147-1-127147-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Through a combination of theoretical and experimental observations we study the high temperature decomposition behavior of c-(TixZryAlzN) alloys. We show that for most concentrations the high formation energy of (ZrAl)N causes a strong tendency for spinodal decomposition between ZrN and AlN while other decompositions tendencies are suppressed. In addition we observe that entropic  effects due to configurational disorder favor a formation of a stable Zr-rich (TiZr)N phase with increasing temperature. Our calculations also predict that at high temperatures a Zr rich (TiZrAl)N disordered phase should become more resistant against the spinodal decomposition despite its high and positive formation energy due to the specific topology of the free energy surface at the relevant concentrations. Our experimental observations confirm this prediction by showing strong tendency towards decomposition in a Zr-poor sample while a Zr-rich alloy shows a greatly reduced decomposition rate, which is mostly attributable to binodal decomposition processes. This result highlights the importance of considering the second derivative of the free energy, in addition to its absolute value in predicting decomposition trends of thermodynamically unstable alloys.
  •  
30.
  • Lind, Hans, et al. (författare)
  • Improving thermal stability of hard coating films via a concept of multicomponent alloying
  • 2011
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 99:9, s. 091903-
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a design route for the next generation of nitride alloys via a concept of multicomponent alloying based on self-organization on the nanoscale via a formation of metastable intermediate products during the spinodal decomposition. We predict theoretically and demonstrate experimentally that quasi-ternary (TiCrAl)N alloys decompose spinodally into (TiCr)N and (CrAl)N-rich nanometer sized regions. The spinodal decomposition results in age hardening, while the presence of Cr within the AlN phase delays the formation of a detrimental wurtzite phase leading to a substantial improvement of thermal stability compared to the quasi-binary (TiAl)N or (CrAl)N alloys.
  •  
31.
  • Lind, Hans, et al. (författare)
  • Systematic theoretical search for alloys with increased thermal stability for advanced hard coatings applications
  • 2013
  • Ingår i: New Journal of Physics. - : Institute of Physics: Open Access Journals / Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft. - 1367-2630. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • State-of-the-art alloys for hard coating applications, such as TiAlN, are known to suffer from decreased hardness during heat treatment in excess of 900 °C due to the formation of detrimental wurtzite AlN phases. Recent research has shown that multicomponent alloying with additional transition metals (TMs) such as Cr can shift the onset of the phase transformations to higher temperatures, but a search for new alloys is generally time-consuming due to the large number of processes that influence material properties along with the large number of alloy compositions that have to be synthesized. To overcome this difficulty we carry out systematic first-principles calculations aimed at finding potential new multicomponent TM aluminum nitride alloys for advanced hard coating applications. We direct our search towards a specific property, the thermal stability of the coating. In particular, we concentrate on the thermodynamic stability of the cubic B1 TM–Al–N phase relative to the wurtzite phase, and choose the enthalpy difference between them as our search descriptor. We perform ab initio calculations for all TMs, considered as impurities in AlN, and identify the most promising candidates that may improve the thermal stability. We present arguments that these elements should be targeted in future in-depth studies, theoretical, as well as experimental.
  •  
32.
  • Lind, Hans (författare)
  • Theoretical understanding of stability of alloys for hard-coating applications and design
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The performance of modern hard coating materials puts high demands on properties such as hardness, thermal stability and oxidation resistance. These properties not only depend on the chemical composition, but also on the structure of the material on a nanoscale. This kind of nanostructuring will change during use and can be both beneficial and detrimental as materials grown under non-equilibrium conditions transforms under heat treatment or pressure into other structures with significantly different properties. This thesis aims to reveal the physics behind the processes of phase stability and transformations and how this can be utilized to improve on the properties of this class of alloys. This has been achieved through the application of various methods of first-principles calculations and analysis of the results on the basis of thermodynamics and electronic structure theory.Within multicomponent transition metal aluminum nitride alloys (TMAlN) a number of studies have been carried out and presented here on ways of improving high temperature stability and hardness. Most (TMAl)N and TMN prefer a cubic B1 structure while AlN is stable in a hexagonal B4 phase, but for the purposes of hard coatings the metastable cubic B1 AlN phase, isostructural with the TMN phase is desired. It will be shown how the introduction of additional alloying components, such as Cr, into (TiAl)N changes the thermodynamic stability of phases so that new intermediary and metastable phases are formed during decomposition. In the case of such a (CrAl)N phase it is shown to have greater thermodynamic stability in the cubic phase than the pure AlN, resulting in improved high temperature hardness. Also, the importance of treating not just the binodal decomposition through the formation energy relative to end products but also the impact of spinodal decomposition from its second derivative due to the topology of formation energy surfaces is emphasized in the thesis. The impact of pressure on the AlN phase has also been studied through the calculation of a P-T diagram of AlN as part of a (TiAl)N alloy.During the study of chemical alloying of TM components into AlN the alloying of low concentrations of these TM were treated in great detail. What is generally referred to as the AlN phase in decomposition is not entirely pure and can be expected to contain traces of any alloying components, such as Ti and Cr or whatever other metals may be present. Low concentration alloying of Cr, on the order of 5-10% is also shown to be stable with regard to isostructural decomposition. Detailed analysis of the effect of Ti and Cr impurities in AlN has been carried out along with a systematic search of AlN alloyed with small amounts of other TM components. The impact of these impurities on the electronic structure and thermodynamic properties is analyzed and the general trends will be explained through the occupation of impurity states by d-like electrons.Theoretical treatment of such impurities is not straightforward however. AlN is an s-p semiconductor with a wide band gap while TM impurities generate states of a d-like nature situated inside the band gap. Such localized impurity states are expected to give rise to magnetic effects due to spin dependent exchange, in addition strong correlation effects might have to be taken into account. For that reason the use of hybrid functionals with orbital corrections according to the mHSE+Vw scheme, developed specifically for this class of materials, has been used and shown to influence the results during calculation of impurities of Ti and Cr.In nanocomposite multilayered structures, composed of very thin layers of one material sandwiched between slabs of another, such as layers of SiN between TiN or ZrN, the material properties are greatly affected by the interfaces. In addition to the thermodynamic effects and lattice strains of the interfaces one also has to consider the atomic vibrational motion in the interface structure. Hence, dynamical stability of these thin multilayers is of great importance. As part of this thesis, results on the thermodynamic and dynamical stability of both TiN-SiN layers and ZrN-SiN will be presented. It will be shown that due to considerable dynamical instability in the interface structure of monolayered B1 SiN sandwiched between isostructural layers of B1 ZrN along (111) interfaces this structure cannot be expected to grow, instead preferring the stable (001) direction of growth.
  •  
33.
  • Lind, Hans, et al. (författare)
  • Ti and Cr impurities in cubic and hexagonal AlN
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • AlN is a wide band gap semiconductor that is used in many fields, e.g. as electronic material, for piezoelectric applications but also as a component material in high performance hard coating alloys. The stable structure under ambient conditions is a hexagonal wurtzite structure, but it has also been observed in the tetrahedrally bonded cubic zinc-blende structure as well as cubic rock-salt phases that become stable at high pressure. The metastable rock-salt phase of AlN also forms during decomposition processes in hard-coating alloys such as (TiAl)N, (CrAl)N and (TiCrAl)N. Even though thermodynamically unstable, one can expect some amount of Ti and Cr to be present in the c-AlN phase during the decomposition. Still, little study has been done for the dilute (TMAl)N alloys with cubic B1 crystal structure. We study the electronic structure of Ti and Cr impurities in B1 AlN. Because of the limitations of standard local and semi-local approximations within the density functional theory (DFT) in the treatment of wide band gap semiconductors, as well as conventional hybrid functionals for systems consisting of correlated localized and delocalized orbitals, we apply the mHSE+Vw method, which has been developed specifically to dealing with these kind of problems. Simulations are done by means of the supercell technique with single impurities, as well as for the impurity pairs. The effects of different atomic configurations of the TM-impurities on phase stability and magnetic properties of the cubic B1 AlN is studied and compared to the those in hexagonal B4 structures. Our results underline the importance of correlation and magnetic effects for the description of properties of cubic AlN doped with Ti and Cr.
  •  
34.
  • Marten, Tobias, et al. (författare)
  • First-principles study of the SiNx/TiN(001) interface
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 85:10, s. 104106-
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the SiNx tissue phase in superhard TiN/SiNx nanocomposites has been debated in the literature. We present a theoretical investigation of the possibility of crystalline and coherent ( 001) interfaces that satisfies the two necessary criteria, stability with respect to lattice vibrations as well as to variations in stoichiometry. It is found that one monolayer of Si tetrahedrally coordinated by N in a B3-like geometry embedded between B1-TiN( 001) surfaces is both dynamically stable and thermodynamically stable with respect to vacancy formation. However, with increasing layer thickness the B3-type structure becomes unstable with respect to Si vacancy formation. Instead we suggest that a tetragonal D0(22)-like order of Si vacancies can stabilize the interface. These structures are in line with the experimental findings of the crystalline tissue phase which has coherent interfaces with TiN.
  •  
35.
  • Mattesini, Maurizio, et al. (författare)
  • Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites : A first-principles study
  • 2009
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 79, s. 125122-
  • Tidskriftsartikel (refereegranskat)abstract
    • Wehave performed ab initio calculations for the cubic inverse-perovskite Sc3EN(E=Al,Ga,In) systems to study their electronic band-structures and elastic properties.In this study, we used the accurate augmented plane waveplus local orbital method to find the equilibrium structural parametersand to compute the full elastic tensors. The obtained single-crystalelastic constants were used to quantify the stiffness of theSc-based ternary nitrides and to appraise their mechanical stability. Thesite-projected density of states, Fermi surfaces, and the charge-density plotshave also been used to analyze the chemical bonding betweenthe Sc6N cluster and the surrounding metallic lattice of eitherAl, Ga, or In atoms. Our calculations show that Sc3GaNhas the largest covalent Sc-N bonding-type character with the highestYoung, shear, and bulk moduli. Compared with the other twoisoelectronic systems, it also behaves as the most brittle materialwith a relatively large elastic anisotropy.
  •  
36.
  • Mikhaylushkin, Arkady, et al. (författare)
  • Stability of the ternary perovskites Sc3EN (E=B,Al,Ga,In) from first principles
  • 2009
  • Ingår i: PHYSICAL REVIEW B. - 1098-0121. ; 79:13, s. 134107-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical and thermodynamic stability of the isoelectronic ternary inverse perovskites Sc3EN (E=B,Al,Ga,In) has been studied from first principles. We confirm stability of recently synthesized cubic phases Sc3AlN and Sc3InN, and predict the stability of cubic Sc3GaN and a triclinic phase aP20-Sc3BN. Substantial phonon softening in Sc3AlN and Sc3GaN is observed indicating a possibility that structural defects could form readily. In accord, our experiments show that magnetron sputter deposited films contain regions with high density of nonperiodic stacking faults along the < 111 > growth direction. We suggest that defect-free crystals may exhibit anomalies in the carrier properties, promising for electronic applications.
  •  
37.
  • Norrby, Niklas, et al. (författare)
  • High pressure and high temperature stabilization of cubic AlN in Ti0.60Al0.40N
  • 2013
  • Ingår i: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 113:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, the decomposition of unstable arc evaporated Ti0.6Al0.4N at elevated temperatures and quasihydrostatic pressures has been studied both experimentally and by first-principles calculations. High pressure and high temperature (HPHT) treatment of the samples was realized using the multi anvil press and diamond anvil cell techniques. The products of the HPHT treatment of Ti0.6Al0.4N were investigated using x-ray diffractometry and transmission electron microscopy. Complimentary calculations show that both hydrostatic pressure and high temperature stabilize the cubic phase of AlN, which is one of the decomposition products of Ti0.6Al0.4N. This is in agreement with the experimental results which in addition suggest that the presence of Ti in the system serves to increase the stability region of the cubic c-AlN phase. The results are industrially important as they show that Ti0.6Al0.4N coatings on cutting inserts do not deteriorate faster under pressure due to the cubic AlN to hexagonal AlN transformation.
  •  
38.
  • Rudenko, Alexander N., et al. (författare)
  • Electronic and optical properties of crystalline nitrogen versus black phosphorus: A comparative first-principles study
  • 2022
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 105:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Crystalline black nitrogen (BN) is an allotrope of nitrogen with the black phosphorus (BP) structure recently synthesized at high pressure by two independent research groups [Ji et al., Sci. Adv. 6, eaba9206 (2020); Laniel et al., Phys. Rev. Lett. 124, 216001 (2020)]. Here, we present a systematic study of the electronic and optical properties of BN focusing on its comparison with BP. To this end, we use the state-of-the-art quasiparticle self-consistent GW approach with vertex corrections in both the electronic and optical channels. Despite many similarities, the properties of BN are found to be considerably different. Unlike BP, BN exhibits a larger optical gap (2.5 vs 0.26 eV), making BN transparent in the visible spectral region with a highly anisotropic optical response. This difference can be primarily attributed to a considerably reduced dielectric screening in BN, leading to enhancement of the effective Coulomb interaction. Despite relatively strong Coulomb interaction, exciton formation is largely suppressed in both materials. Our analysis of the elastic properties shows exceptionally high stiffness of BN, comparable to that of diamond.
  •  
39.
  • Salamania, Janella, 1992-, et al. (författare)
  • Elucidating dislocation core structures in titanium nitride through high-resolution imaging and atomistic simulations
  • 2022
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 224
  • Tidskriftsartikel (refereegranskat)abstract
    • Although titanium nitride (TiN) is among the most extensively studied and thoroughly characterizedthin-film ceramic materials, detailed knowledge of relevant dislocation core structures is lacking. Byhigh-resolution scanning transmission electron microscopy (STEM) of epitaxial single crystal (001)-oriented TiN films, we identify different dislocation types and their core structures. These include, besidesthe expected primary a/2{110}h110i dislocation, Shockley partial dislocations a/6{111}h112i and sessileLomer edge dislocations a/2{100}h011i. Density-functional theory and classical interatomic potentialsimulations complement STEM observations by recovering the atomic structure of the different disloca-tion types, estimating Peierls stresses, and providing insights on the chemical bonding nature at the core.The generated models of the dislocation cores suggest locally enhanced metal–metal bonding, weakenedTi-N bonds, and N vacancy-pinning that effectively reduces the mobilities of {110}h110i and {111}h112idislocations. Our findings underscore that the presence of different dislocation types and their effects onchemical bonding should be considered in the design and interpretations of nanoscale and macroscopicproperties of TiN.
  •  
40.
  • Salamania, Janella, 1992-, et al. (författare)
  • High-resolution STEM investigation of the role of dislocations during decomposition of Ti1-xAlxNy
  • 2023
  • Ingår i: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • The defect structures forming during high-temperature decomposition of Ti1-xAlxNy films were investigated through high-resolution scanning transmission electron microscopy. After annealing to 950 °C, misfit edge dislocations a/6〈112〉{111} partial dislocations permeate the interface between TiN-rich and AlN-rich domains to accommodate lattice misfits during spinodal decomposition. The stacking fault energy associated with the partial dislocations decreases with increasing Al content, which facilitates the coherent cubic to wurtzite structure transition of AlN-rich domains. The wurtzite AlN-rich structure is recovered when every third cubic {111} plane is shifted by along the [211] direction. After annealing to 1100 °C, a temperature where coarsening dominates the microstructure evolution, we observe intersections of stacking faults, which form sessile locks at the interface of the TiN- and AlN-rich domains. These observed defect structures facilitate the formation of semicoherent interfaces and contribute to hardening in Ti1-xAlxNy.
  •  
41.
  • Salamania, Janella, et al. (författare)
  • High temperature decomposition and age hardening of single-phase wurtzite Ti1−xAlxN thin films grown by cathodic arc deposition
  • 2024
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Wurtzite TmAlN (T-m = transition metal) themselves are of interest as semiconductors with tunable band gap, insulating motifs to superconductors, and piezoelectric crystals. Characterization of wurtzite TmAlN is challenging because of the difficulty to synthesize them as single-phase solid solution and such thermodynamic, elastic properties, and high temperature behavior of wurtzite Ti1-xAlxN is unknown. Here, we investigated the high temperature decomposition behavior of wurtzite Ti1-xAlxN films using experimental methods combined with first-principles calculations. We have developed a method to grow single-phase metastable wurtzite Ti1-xAlxN (x = 0.65, 0.75, 085, and 0.95) solid-solution films by cathodic arc deposition using low duty-cycle pulsed substrate-bias voltage. We report the full elasticity tensor for wurtzite Ti1-xAlxN as a function of Al content and predict a phase diagram including a miscibility gap and spinodals for both cubic and wurtzite Ti1-xAlxN. Complementary high-resolution scanning transmission electron microscopy and chemical mapping demonstrate decomposition of the films after high temperature annealing (950 degrees C), which resulted in nanoscale chemical compositional modulations containing Ti-rich and Al-rich regions with coherent or semicoherent interfaces. This spinodal decomposition of the wurtzite film causes age hardening of 1-2 GPa.
  •  
42.
  • Sangiovanni, Davide, et al. (författare)
  • Descriptor for slip-induced crack blunting in refractory ceramics
  • 2023
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the competition between brittleness and plasticity in refractory ceramics is of importance for aiding design of hard materials with enhanced fracture resistance. Inspired by experimental observations of crack shielding due to dislocation activity in TiN ceramics [Kumar et al., Int. J. Plast. 27, 739 (2011)], we carry out comprehensive atomistic investigations to identify mechanisms responsible for brittleness and slip-induced plasticity in Ti-N systems. First, we validate a semiempirical interatomic potential against density-functional theory results of Griffith and Rice stress intensities for cleavage (K-Ic) and dislocation emission (K-Ie) as well as ab initio molecular dynamics mechanical-testing simulations of pristine and defective TiN lattices at temperatures between 300 and 1200 K. The calculated K-Ic and K-Ie values indicate intrinsic brittleness, as K-Ic << K-Ie. However, KI-controlled molecular statics simulations-which reliably forecast macroscale mechanical properties through nanoscale modeling-reveal that slip plasticity can be promoted by a reduced sharpness of the crack and/or the presence of anion vacancies. Classical molecular dynamics simulations of notched Ti-N supercell models subject to tension provide a qualitative understanding of the competition between brittleness and plasticity at finite temperatures. Although crack growth occurs in most cases, a sufficiently rapid accumulation of shear stress at the notch tip may postpone or prevent fracture via nucleation and emission of dislocations. Furthermore, we show that the probability to observe slip-induced plasticity leading to crack blunting in flawed Ti-N lattices correlates with the ideal tensile/shear strength ratio (I-plasticity(slip)) of pristine Ti-N crystals. We propose that the I-plasticity(slip) descriptor should be considered for ranking the ability of ceramics to blunt cracks via dislocation-mediated plasticity at finite temperatures.
  •  
43.
  • Sangiovanni, Davide, et al. (författare)
  • N and Ti adatom dynamics on stoichiometric polar TiN(111) surfaces
  • 2016
  • Ingår i: Surface Science. - : ELSEVIER SCIENCE BV. - 0039-6028 .- 1879-2758. ; 649, s. 72-79
  • Tidskriftsartikel (refereegranskat)abstract
    • We use molecular dynamics (MD) based on the modified embedded atom method (MEAM) to determine diffusion coefficients and migration pathways for Ti and N adatoms (Ti-ad and N-ad) on TiN(111). The reliability of the classical model-potential is verified by comparison with density functional theory (DFT) results at 0 K. MD simulations carried out at temperatures between 600 and 1800 K show that both Ti-ad and N-ad favor fcc surface sites and migrate among them by passing through metastable hcp positions. We find that N-ad species are considerably more mobile than Ti-ad on TiN(111); contrary to our previous results on TiN(001). In addition, we show that lattice vibrations at finite temperatures strongly modify the potential energy landscape and result in smaller adatom migration energies, E-a = 1.03 for Ti-ad and 0.61 eV for N-ad, compared to 0 K values E-aOK = 1.55 (Ti-ad) and 0.79 eV (N-ad). We also demonstrate that the inclusion of dipole corrections, neglected in previous DFT calculations, is necessary in order to obtain the correct formation energies for polar surfaces such as TiN(111). (C) 2016 Elsevier B.V. All rights reserved.
  •  
44.
  • Sangiovanni, Davide, et al. (författare)
  • Strength, transformation toughening, and fracture dynamics of rocksalt-structure Ti1-xAlxN (0 <= x <= 0.75) alloys
  • 2020
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ab initio-calculated ideal strength and toughness describe the upper limits for mechanical properties attainable in real systems and can, therefore, be used in selection criteria for materials design. We employ density-functional ab initio molecular dynamics (AIMD) to investigate the mechanical properties of defect-free rocksalt-structure (B1) TiN and B1 Ti1-xAlxN (x = 0.25, 0.5, 0.75) solid solutions subject to [001], [110], and [111] tensile deformation at room temperature. We determine the alloys ideal strength and toughness, elastic responses, and ability to plastically deform up to fracture as a function of the Al content. Overall, TiN exhibits greater ideal moduli of resilience and tensile strengths than (Ti,Al)N solid solutions. Nevertheless, AIMD modeling shows that, irrespective of the strain direction, the binary compound systematically fractures by brittle cleavage at its yield point. The simulations also indicate that Ti0.5Al0.5N and Ti0.25Al0.75N solid solutions are inherently more resistant to fracture and possess much greater toughness than TiN due to the activation of local structural transformations (primarily of B1 -amp;gt; wurtzite type) beyond the elastic-response regime. In sharp contrast, (Ti,Al)N alloys with 25% Al exhibit similar brittleness as TiN. The results of this work are examples of the limitations of elasticity-based criteria for prediction of strength, brittleness, ductility, and toughness in materials able to undergo phase transitions with loading. Comparing present and previous findings, we suggest a general principle for design of hard ceramic solid solutions that are thermodynamically inclined to dissipate extreme mechanical stresses via transformation toughening mechanisms.
  •  
45.
  • Sangiovanni, Davide, et al. (författare)
  • Temperature-dependent elastic properties of binary and multicomponent high-entropy refractory carbides
  • 2021
  • Ingår i: Materials & design. - : Elsevier Science Ltd. - 0264-1275 .- 1873-4197. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • Available information concerning the elastic moduli of refractory carbides at temperatures (T) of relevance for practical applications is sparse and/or inconsistent. Ab initio molecular dynamics (AIMD) simulations at T = 300, 600, 900, and 1200 K are carried out to determine the temperature-dependences of the elastic constants of rocksalt-structure (B1) TiC, ZrC, HfC, VC, TaC compounds, as well as high-entropy (Ti,Zr,Hf,Ta,W)C and (V,Nb, Ta,Mo,W)C. The second-order elastic constants are calculated by least-square fitting of the analytical expressions of stress/strain relationships to simulation results obtained from three tensile and three shear deformation modes. Sound-velocity measurements are employed to validate AIMD values of bulk, shear, and elastic moduli of single-phase B1 (Ti,Zr,Hf,Ta,W)C and (V,Nb,Ta,Mo,W)C at ambient conditions. In comparison with the predictions of previous ab initio calculations - where the extrapolation of finite-temperature elastic properties accounted for thermal expansion while neglecting intrinsic vibrational effects - AIMD simulations produce a softening of shear elastic moduli with T in closer agreement with experiments. The results show that TaC is the system which exhibits the highest elastic resistances to tensile and shear deformation up to 1200 K, and indicate the (V,Nb,Ta,Mo,W)C system as candidate for applications that require superior toughness at room as well as elevated temperatures. (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
46.
  • Shapeev, Alexander V, et al. (författare)
  • Elinvar effect in beta-Ti simulated by on-the-fly trained moment tensor potential
  • 2020
  • Ingår i: New Journal of Physics. - : IOP PUBLISHING LTD. - 1367-2630. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination of quantum mechanics calculations with machine learning techniques can lead to a paradigm shift in our ability to predict materials properties from first principles. Here we show that on-the-fly training of an interatomic potential described through moment tensors provides the same accuracy as state-of-the-art ab initio molecular dynamics in predicting high-temperature elastic properties of materials with two orders of magnitude less computational effort. Using the technique, we investigate high-temperature bcc phase of titanium and predict very weak, Elinvar, temperature dependence of its elastic moduli, similar to the behavior of the so-called GUM Ti-based alloys (Sato et al 2003 Science 300 464). Given the fact that GUM alloys have complex chemical compositions and operate at room temperature, Elinvar properties of elemental bcc-Ti observed in the wide temperature interval 1100-1700 K is unique.
  •  
47.
  • Shu, Rui, 1990-, et al. (författare)
  • Stoichiometry Effects on the Chemical Ordering and Superconducting Properties in TiZrTaNbNx Refractory High Entropy Nitrides
  • 2023
  • Ingår i: Annalen der Physik. - : Wiley-VCH Verlagsgesellschaft. - 0003-3804 .- 1521-3889.
  • Tidskriftsartikel (refereegranskat)abstract
    • High-entropy materials, an exciting new class of structural materials involvingfive or more elements, are emerging as unexplored ground forsuperconductors. Here, the effects of nitrogen stoichiometry are investigatedon local chemical structure of TiZrNbTa-based thin films by variousX-ray-based techniques. Lattice distortion and short-range order of a set ofTiZrNbTaNxsamples, including bond lengths of different atomic pairs andcoordination numbers of substituting atoms are quantitatively studied. Themaximum superconducting transition temperature Tcis found at 10 K for anear-stoichiometric (TiZrNbTa)N1.08film, which is>8 K measured for ametallic TiZrNbTa film. The underlying electronic structure and chemicalbonding in these high entropy nitrides thus influence the superconductingmacroscopic properties.
  •  
48.
  • Shulumba, Nina, et al. (författare)
  • Temperature-dependent elastic properties of Ti1−xAlxN alloys
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 107:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Ti1−xAlxN is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the newly developed symmetry imposed force constant temperature dependent effective potential method, that include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C11 decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.
  •  
49.
  • Skripnyak, Natalia, et al. (författare)
  • Achieving low elastic moduli of bcc Ti-V alloys in vicinity of mechanical instability
  • 2020
  • Ingår i: AIP Advances. - : AMER INST PHYSICS. - 2158-3226. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Body centered cubic (bcc) Ti-based alloys are of interest for multiple technological applications ranging from aerospace technology to biomedicine. However, these alloys are usually unstable at low temperatures. Indeed, the calculated elastic modulus C of bcc Ti-V alloys with low V concentrations is negative at 0 K temperature, indicating their mechanical instability. Here, we investigate elastic moduli of the Ti-V system in the vicinity of mechanical instability theoretically and experimentally. Our calculations predict that mechanical stabilization of bcc Ti-V alloys, which is governed by the hardening of C , is possible at as low V concentration as 18 at.%. We synthesize single-phase bcc alloys with as little as 22 at.% of V with low values of Youngs modulus. Moreover, we predict strong concentration dependence of anisotropy of Youngs modulus in these alloys that can also be used in tuning the alloy composition to design materials for specific applications.
  •  
50.
  • Steneteg, Peter, et al. (författare)
  • Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 87:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic properties of cubic TiN are studied theoretically in a wide temperature interval. First-principles simulations are based on ab initio molecular dynamics (AIMD). Computational efficiency of the method is greatly enhanced by a careful preparation of the initial state of the simulation cell that minimizes or completely removes a need for equilibration and therefore allows for parallel AIMD calculations. Elastic constants C11, C12, and C44 are calculated. A strong dependence on the temperature is predicted, with C11 decreasing by more than 29% at 1800 K as compared to its value obtained at T=0 K. Furthermore, we analyze the effect of temperature on the elastic properties of polycrystalline TiN in terms of the bulk and shear moduli, the Young's modulus and Poisson ratio. We construct sound velocity anisotropy maps, investigate the temperature dependence of elastic anisotropy of TiN, and observe that the material becomes substantially more isotropic at high temperatures. Our results unambiguously demonstrate the importance of taking into account finite temperature effects in theoretical calculations of elastic properties of materials intended for high-temperature applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 84
Typ av publikation
tidskriftsartikel (74)
doktorsavhandling (5)
annan publikation (4)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (73)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Tasnádi, Ferenc (70)
Abrikosov, Igor (46)
Odén, Magnus (21)
Hultman, Lars (19)
Alling, Björn (15)
Lind, Hans (10)
visa fler...
Dubrovinsky, Leonid (9)
Ponomareva, Alena V. (9)
Birch, Jens (9)
Wang, Fei (8)
Fedotenko, Timofey (8)
Bykov, Maxim (8)
Chariton, Stella (8)
Abrikosov, Igor A., ... (8)
Tasnadi, Ferenc, 197 ... (8)
Tholander, Christoph ... (7)
Sangiovanni, Davide (7)
Khandarkhaeva, Saian ... (6)
Laniel, Dominique (6)
Rogström, Lina (6)
Simak, Sergey (5)
Hanfland, Michael (5)
Darakchieva, Vanya (5)
Prakapenka, Vitali (5)
Zukauskaite, Agne (5)
Ghafoor, Naureen (5)
Bock, Florian (5)
Schnick, Wolfgang (5)
Ekholm, Marcus (4)
Aslandukov, Andrey (4)
Yin, Yuqing (4)
Trybel, Florian, Dr. ... (4)
Tidholm, Johan (4)
Dubrovinskaia, Natal ... (3)
Hellman, Olle (3)
Palisaitis, Justinas (3)
Bykova, Elena (3)
Höglund, Carina (3)
Katsnelson, Mikhail, ... (3)
Armiento, Rickard (3)
Greene, Joseph E (3)
Liermann, Hanns Pete ... (3)
Giacobbe, Carlotta (3)
Glazyrin, Konstantin (3)
Bright, Eleanor Lawr ... (3)
Doubrovinckaia, Nata ... (3)
Muecklich, Frank (3)
Prakapenka, Vitali B ... (3)
Goncharov, Alexander ... (3)
Rudenko, Alexander N ... (3)
visa färre...
Lärosäte
Linköpings universitet (84)
Uppsala universitet (3)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
Språk
Engelska (84)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (50)
Teknik (18)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy