SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tax Chantal) "

Sökning: WFRF:(Tax Chantal)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Almeida Martins, João P., et al. (författare)
  • Computing and visualising intra-voxel orientation-specific relaxation–diffusion features in the human brain
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:2, s. 310-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation–diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation–diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.
  •  
2.
  • De almeida martins, João P., et al. (författare)
  • Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI
  • 2020
  • Ingår i: Magnetic Resonance. - : Copernicus GmbH. - 2699-0016. ; 1:1, s. 27-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation–diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation–diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols.
  •  
3.
  • Fokkinga, Ella, et al. (författare)
  • Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology
  • Ingår i: Journal of Magnetic Resonance Imaging. - 1053-1807.
  • Forskningsöversikt (refereegranskat)abstract
    • Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. Level of Evidence: NA. Technical Efficacy: Stage 2.
  •  
4.
  • Ligneul, Clémence, et al. (författare)
  • Diffusion-weighted MR spectroscopy : Consensus, recommendations, and resources from acquisition to modeling
  • 2024
  • Ingår i: Magnetic Resonance in Medicine. - 0740-3194. ; 91:3, s. 860-885
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on “Best Practices & Tools for Diffusion MR Spectroscopy” held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
  •  
5.
  • Ravikumar, Sadhana, et al. (författare)
  • Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging
  • 2021
  • Ingår i: Machine Learning in Clinical Neuroimaging - 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. - 9783030875855 ; 13001 LNCS, s. 3-12
  • Konferensbidrag (refereegranskat)abstract
    • Neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s Disease (AD). In this work, we investigate the relationship between MTL morphometry features derived from high-resolution ex vivo imaging and histology-based measures of NFT pathology using a topological unfolding framework applied to a dataset of 18 human postmortem MTL specimens. The MTL has a complex 3D topography and exhibits a high degree of inter-subject variability in cortical folding patterns which poses a significant challenge for volumetric registration methods typically used during MRI template construction. By unfolding the MTL cortex, the proposed framework explicitly accounts for the sheet-like geometry of the MTL cortex and provides a two-dimensional reference coordinate space which can be used to implicitly register cortical folding patterns across specimens based on distance along the cortex despite large anatomical variability. Leveraging this framework in a subset of 15 specimens, we characterize the associations between NFTs and morphological features such as cortical thickness and surface curvature and identify regions in the MTL where patterns of atrophy are strongly correlated with NFT pathology.
  •  
6.
  • Tax, Chantal M.W., et al. (författare)
  • The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain
  • 2020
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • The so-called “dot-compartment” is conjectured in diffusion MRI to represent small spherical spaces, such as cell bodies, in which the diffusion is restricted in all directions. Previous investigations inferred its existence from data acquired with directional diffusion encoding which does not permit a straightforward separation of signals from ‘sticks’ (axons) and signals from ‘dots’. Here we combine isotropic diffusion encoding with ultra-strong diffusion gradients (240 ​mT/m) to achieve high diffusion-weightings with high signal to noise ratio, while suppressing signal arising from anisotropic water compartments with significant mobility along at least one axis (e.g., axons). A dot-compartment, defined to have apparent diffusion coefficient equal to zero and no exchange, would result in a non-decaying signal at very high b-values (b≳7000s/mm2). With this unique experimental setup, a residual yet slowly decaying signal above the noise floor for b-values as high as 15000s/mm2 was seen clearly in the cerebellar grey matter (GM), and in several white matter (WM) regions to some extent. Upper limits of the dot-signal-fraction were estimated to be 1.8% in cerebellar GM and 0.5% in WM. By relaxing the assumption of zero diffusivity, the signal at high b-values in cerebellar GM could be represented more accurately by an isotropic water pool with a low apparent diffusivity of 0.12 μm2/ms and a substantial signal fraction of 9.7%. The T2 of this component was estimated to be around 61ms. This remaining signal at high b-values has potential to serve as a novel and simple marker for isotropically-restricted water compartments in cerebellar GM.
  •  
7.
  • Tax, Chantal M W, et al. (författare)
  • Ultra-strong diffusion-weighted MRI reveals cerebellar grey matter abnormalities in movement disorders
  • 2023
  • Ingår i: NeuroImage: Clinical. - 2213-1582. ; 38, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ​≥ 10,000 s/mm2). Quantifying the proportion of this signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy