SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teeri Tuula) "

Sökning: WFRF:(Teeri Tuula)

  • Resultat 1-50 av 103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aspeborg, Henrik, et al. (författare)
  • Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen
  • 2005
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 137:3, s. 983-997
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood formation is a fundamental biological process with significant economic interest. While lignin biosynthesis is currently relatively well understood, the pathways leading to the synthesis of the key structural carbohydrates in wood fibers remain obscure. We have used a functional genomics approach to identify enzymes involved in carbohydrate biosynthesis and remodeling during xylem development in the hybrid aspen Populus tremula x tremuloides. Microarrays containing cDNA clones from different tissue-specific libraries were hybridized with probes obtained from narrow tissue sections prepared by cryosectioning of the developing xylem. Bioinformatic analyses using the sensitive tools developed for carbohydrate-active enzymes allowed the identification of 25 xylem-specific glycosyltransferases belonging to the Carbohydrate-Active EnZYme families GT2, GT8, GT14, GT31, GT43, GT47, and GT61 and nine glycosidases (or transglycosidases) belonging to the Carbohydrate-Active EnZYme families GH9, GH10, GH16, GH17, GH19, GH28, GH35, and GH51. While no genes encoding either polysaccharide lyases or carbohydrate esterases were found among the secondary wall-specific genes, one putative O-acetyltransferase was identified. These wood-specific enzyme genes constitute a valuable resource for future development of engineered fibers with improved performance in different applications.
  •  
2.
  • Aspeborg, Henrik, 1970-, et al. (författare)
  • Vegetabile material, plants and a method of producing a plant having altered lignin properties
  • 2008
  • Patent (populärvet., debatt m.m.)abstract
    • The present invention is related to a set of genes, which when modified in plants gives altered lignin properties. The invention provides DNA construct such as a vector useful in the method of the invention. Further, the invention relates to a plant cell or plant progeny of the plants and wood produced by the plants according to the invention Lower lignin levels will result in improved saccharification for bio-refining and ethanol production and improved pulp and paper. Increased lignin levels will utilise lignin properties for energy production. The genes and DNA constructs may be used for the identification of plants having altered lignin characteristics as compared to the wild-type. According to the invention genes and DNA constructs may also be used as candidate genes in marker assisted breeding.
  •  
3.
  •  
4.
  • Baumann, Martin J., et al. (författare)
  • Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases : Biological implications for cell wall metabolism
  • 2007
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 19:6, s. 1947-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes were identified by structure-function studies of the recombinantly expressed enzymes in comparison with data for the strict xyloglucan endo-transglycosylase Ptt-XET16-34 from hybrid aspen ( Populus tremula 3 Populus tremuloides). Production of the loop deletion variant Tm-NXG1-Delta YNIIG yielded an enzyme that was structurally similar to Ptt- XET16-34 and had a greatly increased transglycosylation: hydrolysis ratio. Comprehensive bioinformatic analyses of XTH gene products, together with detailed kinetic data, strongly suggest that xyloglucanase activity has evolved as a gain of function in an ancestral GH16 XET to meet specific biological requirements during seed germination, fruit ripening, and rapid wall expansion.
  •  
5.
  • Baumann, Martin J. (författare)
  • Xyloglucan-active enzymes : properties, structures and applications
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellulosabaserade material är världens rikligast förekommande förnyelsebara råvara. Växters cellväggar är naturliga kompositmaterial där den kristallina cellulosan är inbäddad i en väv av hemicellulosa, strukturproteiner och lignin. Xyloglukaner är en viktig hemicellulosagrupp som omger och korslänkar den kristallina cellulosan i cellväggarna. I denna avhandling undersöks undersöks sambanden mellan struktur och funktion hos olika xyloglukan-aktiva enzymer. En modell för effektiv enzymatisk omvandling av biomassa ges av cellulosomen hos den anaeroba prokaryota organismen Clostridium thermocellum. Cellulosomen är ett proteinkomplex med hög molmassa och flera olika enzymaktiviteter, bl.a. det inverterande xyloglukan-endohydrolaset CtXGH74A. Proteinstrukturen för CtXGH74A har lösts i komplex med xyloglukanoligosackarider, som stabliliserar vissa loopar/slingor som är oordnade i apostrukturen. Ytterligare detaljerade kinetiska och produktananalyser har genomförts för att entydigt visa att CtXGH74A är ett endoxyloglukanas vars slutliga nedbrytningsprodukt är Glc4-baserade xyloglukanoligosackarider. Som jämförelse innehåller glykosidhydrolasfamilj 16 (GH16) såväl hydrolytiska endoxyloglukanaser som xyloglukantransglykosylaser (XETs) från växter. För att utreda vad som bestämmer förhållandet mellan transglykosylering och hydrolys i xyloglukanaktiva enzymer från familj GH 16 jämfördes struktur och kinetik hos ett strikt transglykosylas, PttXET16-34 från hybridasp, med ett nära besläktat hydrolytiskt enzym, NXG1 från krasse. I NXG1 identifierades en viktig förlängningsloop, som vid trunkering gav ett muterat enzym med högre transglykosyleringshastighet och minskad hydrolytisk aktivitet. Kinetikstudierna genomfördes med hjälp av nyutvecklade känsliga provmetoder med väldefinerade XGO:er och ett antal kromogena XGO-arylglykosider. En detaljerad förståelse av enzymologin inom GH16 möjliggjorde utvecklingen av en ny kemoenzymatisk metod för biomimetisk fiberytmodifiering med hjälp av PttXET16-34s translgykosyleringsaktivitet. Aminoalditolderivat av xyloglukanoligosackarider användes som nyckelintermediärer för att introducera ny kemisk funktionalitet hos xyloglukan, såsom kromoforer, reaktiva grupper, proteinligander och initiatorer för polymeriseringsreaktioner. Tekniken innebär ett nytt och mångsidigt verktyg för fiberytmodifiering.
  •  
6.
  • Becker, D., et al. (författare)
  • Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum : the pH behaviour of Trichoderma reesei CeI7A and its E223S/A224H/L225V/T226A/D262G mutant
  • 2001
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 356, s. 19-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves, The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 Angstrom (= 0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 Angstrom contact between N-2 and O'(1). The pH variation of k(cat)/K-m for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wildtype and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K-m values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced nonproductive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.
  •  
7.
  • Bessueille, Laurence, et al. (författare)
  • Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis
  • 2009
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 420, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Detergent-resistant plasma membrane microdomains [DRMs (detergent-resistant membranes)] were isolated recently from several plant species. As for animal cells, a large range of cellular functions, such as signal transduction, endocytosis and protein trafficking, have been attributed to plant lipid rafts and DRMs. The data available are essentially based on protcomics and more approaches need to be undertaken to elucidate the precise function of individual populations of DRMs in plants. We report here the first isolation of DRMs from purified plasma membranes of a tree species, the hybrid aspen Populus tremula x tremuloides, and their biochemical characterization. Plasma membranes were solubilized with Triton X-100 and the resulting DRMs were isolated by flotation in sucrose density gradients. The DRMs were enriched in sterols, sphingolipids and glycosylphosphatidylinositol-anchored proteins and thus exhibited similar properties to DRMs from other species. However, they contained key carbohydrate synthases involved in cell wall polysaccharide biosynthesis, namely callose [(1 -> 3)-beta-D-glucan] and cellulose synthases. The association of these enzymes with DRMs was demonstrated using specific glucan synthase assays and antibodies, as well as biochemical and chemical approaches for the characterization of the polysaccharides synthesized in vitro by the isolated DRMs. More than 70% of the total glucan synthase activities present in the original plasma membranes was associated with the DRM fraction. In addition to shedding light on the lipid environment of callose and cellulose synthases, our results demonstrate the involvement of DRMs in the biosynthesis of important cell wall polysaccharides. This novel concept suggests a function of plant membrane microdomains in cell growth and morphogenesis.
  •  
8.
  • Blomqvist, Kristina, et al. (författare)
  • Cellulose Biosynthesis in Forest Trees
  • 2007
  • Ingår i: Cellulose: Molecular and Structural Biology. - Dordrecht : Springer Netherlands. - 9781402053320 ; , s. 85-106
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Wood formation is a fundamental biological process of significant economic andcommercial interest. During wood formation, most glucose from the carbohydratemetabolism is channeled to cellulose in the secondary cell walls. The cellulose microfibrils associate with hemicellulose, proteins, and lignin to form the strong and flexiblebiocomposite known as wood. As the main wood component, cellulose is essential forthe survival of trees and for their exploitation by man.In spite of this, the molecular details of cellulose biosynthesis have remained obscure in all plants. In particular, the toughness of wood cells makes it hard to isolateactive enzymes and study cellulose synthesis in trees. Functional genomics providespowerful new tools to study complex metabolic processes. In this way, 18 CesA geneshave been recently identified in the genome sequence of Populus trichocarpa.Expression profiling during wood formation has shown that four of these genesare specifically upregulated during xylogenesis and/or tension wood formation. Othergenes that follow the same expression pattern as the wood-related CesA genes encodethe putative Korrigan ortholog PttCel9A and a novel microtubule associated proteinPttMAP20. Cell suspension cultures of hybrid aspen with elevated expression of thesecondary cell wall specific PttCesA genes have been used for efficient in vitro synthesisof cellulose, which will facilitate future studies of this challenging process in trees.
  •  
9.
  • Boer, H., et al. (författare)
  • Characterization of Trichoderma reesei cellobiohydrolase CeI7A secreted from Pichia pastoris using two different promoters
  • 2000
  • Ingår i: Biotechnology and Bioengineering. - 0006-3592 .- 1097-0290. ; 69:5, s. 486-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) pro meter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermenter. Production of Ce17A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K-m values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.
  •  
10.
  • Bollok, Monika, et al. (författare)
  • Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris
  • 2005
  • Ingår i: Applied Biochemistry and Biotechnology. - : Springer Science and Business Media LLC. - 0273-2289 .- 1559-0291. ; 126, s. 61-77
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene XET16A encoding the enzyme xyloglucan endotransglycosylase (XET) from hybrid aspen (Populus tremula x tremuloides Mich) was transformed into Pichia pastoris GS115 and the enzyme was secreted to the medium. The influence of process conditions on the XET production, activity, and proteolytic degradation were examined. Inactivation of XET occurred in the foam, but could be decreased significantly by using an efficient antifoam. Rich medium (yeast extract plus peptone) was needed for product accumulation, but not for growth. The proteolytic degradation of the enzyme in the medium was substantially decreased by also adding yeast extract and peptone to the glycerol medium before induction with methanol. Decreasing the fermentation pH from 5.0 to 4.0 further reduced the proteolysis. The specific activity was further improved by production at 15 degrees C instead of 22 degrees C. In this way a XET production of 54 mg/L active enzyme could be achieved in the process with a specific activity of 18 Unit/mg protein after a downstream process including centrifugation, micro- and ultrafiltration, and ion exchange chromatography.
  •  
11.
  • Bourquin, V., et al. (författare)
  • Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues
  • 2002
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 14:12, s. 3073-3088
  • Tidskriftsartikel (refereegranskat)abstract
    • Xyloglucan transglycosylases (XETs) have been implicated in many aspects of cell wall biosynthesis, but their function in vascular tissues, in general, and in the formation of secondary walls, in particular, is less well understood. Using an in situ XET activity assay in poplar stems, we have demonstrated XET activity in xylem and phloem fibers at the stage of secondary wall formation. Immunolocalization of fucosylated xylogucan with CCRC-M1 antibodies showed that levels of this species increased at the border between the primary and secondary wall layers at the time of secondary wall deposition. Furthermore, one of the most abundant XET isoforms in secondary vascular tissues (PttXET16A) was cloned and immunolocalized to fibers at the stage of secondary wall formation. Together, these data strongly suggest that XET has a previously unreported role in restructuring primary walls at the time when secondary wall layers are deposited, probably creating and reinforcing the connections between the primary and secondary wall layers. We also observed that xylogucan is incorporated at a high level in the inner layer of nacreous walls of mature sieve tube elements.
  •  
12.
  • Brumer, Harry, et al. (författare)
  • Activation of crystalline cellulose surfaces though the chemoenzymatic modification of xyloglucan
  • 2004
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 126:18, s. 5715-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose constitutes an important raw material for many industries. However, the superb load-bearing properties of cellulose are accompanied by poor chemical reactivity. The hydroxyl groups on cellulose surfaces can be reacted but usually not without loss of fiber integrity and strength. Here, we describe a novel chemoenzymatic approach for the efficient incorporation of chemical functionality onto cellulose surfaces. The modification is brought about by using a transglycosylating enzyme, xyloglucan endotranglycosylase, to join chemically modified xyloglucan oligosaccharides to xyloglucan, which has a naturally high affinity to cellulose. Binding of the chemically modified hemicellulose molecules can thus be used to attach a wide variety of chemical moieties without disruption of the individual fiber or fiber matrix.
  •  
13.
  • Brumer, Harry, et al. (författare)
  • Cross-Linking Involving a Polymeric Carbohydrate Material
  • 2005
  • Patent (populärvet., debatt m.m.)abstract
    • The present invention relates to a method of cross-linking a polymeric carbohydrate material with a second material by means of a soluble carbohydrate polymer and a crosslinking agent. The present invention furthermore relates to the resulting cross-linked material, to uses of the cross-linked material, as well as to a kit comprising the soluble carbohydrate polymer and the cross-linking agent.
  •  
14.
  • Christiernin, M., et al. (författare)
  • The effects of xyloglucan on the properties of paper made from bleached kraft pulp
  • 2003
  • Ingår i: Nordic Pulp & Paper Research Journal. - : Walter de Gruyter GmbH. - 0283-2631 .- 2000-0669. ; 18:2, s. 182-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Xyloglucan was adsorbed onto bleached soft-wood kraft pulp followed by preparation and analysis of handsheets with respect to sheet formation as well as sheet mechanical and optical properties. Adsorption of xyloglucan was found to be slow. After more than 20 hrs adsorption, equilibrium had not been reached. The amount of xyloglucan adsorbed increased with beating, but neither the rate of adsorption nor the quantity adsorbed was significantly affected by temperature. Xyloglucan was found to be practically irreversibly adsorbed onto the fibres and the effects of xyloglucan on paper sheet properties were investigated after thorough washing of the pulp. The adsorption characteristics of xyloglucan confirm observations by other authors on other cellulose substrates. Tensile index values for handsheets formed with the xyloglucan-containing pulps were higher than those measured for control pulps with a comparable beating degree. The light scattering coefficient was, however, not affected by xyloglucan adsorption. Hence, the increase in tensile strength is attributed to an increased relative bond strength between the fibres. Tensile strength versus tear strength relationship was similar for pulps with and without xyloglucan, but water retention value and dewatering resistance were lower for the xyloglucan treated pulps than for the reference pulps at the same tensile strength. In addition, formation was improved for pulps with adsorbed xyloglucan. The conclusion is that xyloglucan is a promising wet end additive that decreases the necessity for beating of the pulp and improves the formation of paper.
  •  
15.
  • Collins, Catherine M., et al. (författare)
  • Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii
  • 2007
  • Ingår i: Mycological Research. - : Elsevier BV. - 0953-7562 .- 1469-8102. ; 111, s. 840-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent sequencing of a number of fungal genomes has revealed the presence of multiple putative beta-glucosidases. Here, we report the cloning of two beta-glucosidase genes (bg1 and aven1), which have very different biological functions and represent two of a number of beta-glucosidases from Talaromyces emersonii. The bg1 gene, encoding a putative intracellular beta-glucosidase, shows significant similarity to other fungal glucosidases from glycosyl hydrolase family 1, known to be involved in cellulose degradation. Solka floc, methyl-xylose, gentiobiose, beech wood xylan, and lactose induced expression of bg1, whereas glucose repressed expression. A second beta-glucosidase gene isolated from T. emersonii, aueni, encodes a putative avenacinase, an enzyme that deglucosylates the anti-fungal saponin, avenacin, rendering it less toxic to the fungus. This gene displays high homology with other fungal saponin-hydrolysing enzymes and beta-glucosidases within GH3. A putative secretory signal peptide of 21 amino acids was identified at the N-terminus of the predicted aven1 protein sequence suggesting that this enzyme is extracellular. Furthermore, T. emersonii cultivated on oat plant biomass was shown to deglucosylate avenacin. The presence of the avenacinase transcript was confirmed by RT-PCR on RNA extracted from mycelia grown in the presence of avenacin. The expression pattern of aven1 on various carbon sources was distinctly different from that of bg1. Only methyl-xylose and gentiobiose induced transcription of aven1. Gentiobiose induces synthesis of a number of cellulase genes by T. emersonii and it may be a possible candidate for the natural cellulase inducer observed in Penicillium purpurogenum. This work represents the first report of an avenacinase gene from a thermophilic, saprophytic fungal source, and suggests that this gene is not exclusive to plant pathogens.
  •  
16.
  • Colombani, A., et al. (författare)
  • In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen
  • 2004
  • Ingår i: Cellulose. - 0969-0239 .- 1572-882X. ; 11:3-4, s. 313-327
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to optimize the conditions for in vitro synthesis of (1 --> 3)-beta-D-glucan (callose) and cellulose, using detergent extracts of membranes from hybrid aspen (Populus tremula x tremuloides) cells grown as suspension cultures. Callose was the only product synthesized when CHAPS extracts were used as a source of enzyme. The optimal reaction mixture for callose synthesis contained 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 8 mM Ca2+, and 20 mM cellobiose. The use of digitonin to extract the membrane-bound proteins was required for cellulose synthesis. Yields as high as 50% of the total in vitro products were obtained when cells were harvested in the stationary phase of the growth curve, callose being the other product. The optimal mixture for cellulose synthesis consisted of 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 1 mM Ca2+, 8 mM Mg2+, and 20 mM cellobiose. The in vitro beta-glucans were identified by hydrolysis of radioactive products, using specific enzymes. C-13-Nuclear magnetic resonance spectroscopy and transmission electron microscopy were also used for callose characterization. The (1-->3)-beta-D-glucan systematically had a microfibrillar morphology, but the size and organization of the microfibrils were affected by the nature of the detergent used for enzyme extraction. The discussion of the results is included in a short review of the field that also compares the data obtained with those available in the literature. The results presented show that the hybrid aspen is a promising model for in vitro studies on callose and cellulose synthesis.
  •  
17.
  • Daniel, Geoffrey, et al. (författare)
  • Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa : Labelling with cellulose-binding module CBM1(HjCel7A) and fluorescence and FE-SEM microscopy
  • 2006
  • Ingår i: Holzforschung. - 0018-3830 .- 1437-434X. ; 60:6, s. 618-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The gelatinous layer (G-layer) formed on the lumen wall in early- and latewood fibres of poplar and birch tension wood was characterised using a novel molecular marker specific for crystalline cellulose in conjunction with fluorescence and FE-SEM microscopy. Crystalline cellulose was localised using a cloned Cel7A cellulose-binding module (CBM1(HjCel7A)) from the fungus Hypocrea jecorina conjugated directly to FITC/TRITC or indirectly via a secondary antibody conjugated to FITC for fluorescence microscopy or to gold/silver for FE-SEM. With the CBM1(HjCel7A) conjugate, the G-layer was clearly distinguished from other secondary cell-wall layers as a bright green layer visible in fibres of tension wood in fluorescence microscopy. FEM-SEM images revealed the supramolecular architecture of the G-layer of poplar wood, which consists of well-defined, often concentrically orientated, cellulose aggregates of the order of 30-40 nm. The cellulose aggregates typically have a microfibril angle of almost 0 degrees. Studies on cellulose marked with CBM1(HjCel7A) followed by Au labelling and Ag enhancement complemented the fluorescence observations. The studies demonstrate the usefulness of this novel molecular marker for crystalline cellulose in situ, which was previously difficult to localise. Further proof of distinct cellulose aggregates was observed.
  •  
18.
  • Derba-Maceluch, Marta, et al. (författare)
  • Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood
  • 2015
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 205:2, s. 666-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremulaxtremuloides).PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen.PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
  •  
19.
  • Djerbi, Soraya, 1974- (författare)
  • Cellulose synthases in Populus- identification, expression analyses and in vitro synthesis
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellulose is a biopolymer of great relevance in the plant cell walls, where it constitutes the most important skeletal component. Cellulose is also an important raw material in the pulp- and paper, forest, and textile industries, among others. Cellulose biosynthesis in particular, and xylogenesis in general are processes which are currently poorly understood. Yet, research in cellulose synthesis is progressing and different applications of cellulose, mainly cellulose derivatives for e.g. pharmaceuticals and coatings, are constantly emerging. This thesis depicts how cellulose synthase (CesA) genes in Populus were identified and characterized by gene expression- and bioinformatics analyses. Within an EST database of more than 100,000 clones from wood forming tissues of three different Populus taxa, ten CesA genes were identified in Populus tremula x tremuloides. Subsequent gene expression analyses by using microarrays and real-time PCR experiments in woody tissues, revealed distinct regulation patterns among the genes of interest. This enabled proper classification and characterization of the secondary cell wall related CesA genes, in particular. Bioinformatic analyses of the genome sequence of Populus trichocarpa further provided a complete picture of the number of putative CesA genes retained after several duplication events during tree evolution. In contrast to the previously reported set of ten 'true' CesA genes in many other plant species, the genome of P. trichocarpa encodes 18 putative proteins, which could be assembled into nine groups according to their sequence similarities. Interestingly, studies in the EST database suggested that paralogs within at least two groups have corresponding orthologs in P. tremula x tremuloides, which are furthermore transcribed. This implies that at least some of the duplicated genes have remained functional, or may have acquired a modified function. By focusing on the CesA genes associated with secondary cell wall formation, cellulose synthesis was also studied in poplar cell suspension cultures. Selection of CesA enriched material was performed by determining expression intensities of the CesA genes using RT-PCR, whereupon membrane protein extraction was initiated. CesA proteins are part of large cellulose synthesizing complexes in the plasma membrane. Subsequent proteomic approaches comprised partial purification of these cellulose synthesizing complexes from protein enriched culture material and in vitro cellulose synthesis experiments. De novo synthesized material was successfully characterized and the acquired yields were as high as 50% cellulose (compared to previously reported yields of 30% in other plant systems) of the total in vitro synthesized product. Elevated CesA gene expression levels can thus be correlated to increased protein activity in poplar cell suspension cultures. In addition, antibodies raised against CesA antigens were used in Western blot analyses comprising samples along the protein extraction- and purification procedure. Proteins with corresponding molecular weight to the theoretical 120kDa of CesA proteins were recognized by a range of different specific antibodies. The study demonstrates that poplar cell suspension cultures can provide a valuable model system for studies of cellulose synthesis and different aspects of xylogenesis.
  •  
20.
  • Djerbi, Soraya, et al. (författare)
  • Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) × P. tremuloides (Michx.)
  • 2004
  • Ingår i: Cellulose. - 0969-0239 .- 1572-882X. ; 11:3-4, s. 301-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose is synthesized in plant cell walls by large membrane-bound protein complexes proposed to contain several copies of the catalytic subunit of the cellulose synthase, CesA. Here we report identification of 10 distinct CesA genes within a database of 100,000 ESTs of the hybrid aspen, Populus tremula (L.) x P. tremuloides (Michx.). Expression analyses in normal wood undergoing xylogenesis and in tension wood indicate xylem specific expression of four putative CesA isoenzymes, PttCesA1, PttCesA3-1, PttCesA3-2 and PttCesA9. Both the protein sequences and the expression profiles of PttCesA3-1 and PttCesA3-2 are very similar, and they may thus represent redundant copies of an enzyme with essentially the same function. Further, one of the generally more constitutively expressed CesA genes, PttCesA2, seems to be activated on the opposite side of a tension wood induced stem, while PttCesA6 appears to be more specific for leaf tissues. The rest of the hybrid aspen CesA genes were found to be relatively evenly expressed over the poplar tissues hereby studied.
  •  
21.
  • Djerbi, Soraya, et al. (författare)
  • The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes
  • 2005
  • Ingår i: Planta. - : Springer Science and Business Media LLC. - 0032-0935 .- 1432-2048. ; 221:5, s. 739-746
  • Tidskriftsartikel (refereegranskat)abstract
    • The genome sequence of Populus trichocarpa was screened for genes encoding cellulose synthases by using full-length cDNA sequences and ESTs previously identified in the tissue specific cDNA libraries of other poplars. The data obtained revealed 18 distinct CesA gene sequences in P. trichocarpa. The identified genes were grouped in seven gene pairs, one group of three sequences and one single gene. Evidence from gene expression studies of hybrid aspen suggests that both copies of at least one pair, CesA3-1 and CesA3-2, are actively transcribed. No sequences corresponding to the gene pair, CesA6-1 and CesA6-2, were found in Arabidopsis or hybrid aspen, while one homologous gene has been identified in the rice genome and an active transcript in Populus tremuloides. A phylogenetic analysis suggests that the CesA genes previously associated with secondary cell wall synthesis originate from a single ancestor gene and group in three distinct subgroups. The newly identified copies of CesA genes in P. trichocarpa give rise to a number of new questions concerning the mechanism of cellulose synthesis in trees.
  •  
22.
  • Eklund, Malin, et al. (författare)
  • Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex
  • 2004
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 109:3, s. 277-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein engineering strategies facilitating controlled and spontaneous assembly of macromolecular complexes are of great interest for the design of artificial multi-enzyme systems of pre-defined composition. Here we have combined affinity proteins from different sources to achieve specific and reversible anchoring of affinity domain-tagged reporter proteins to a cell ulose-anchored fusion protein. The design principle mimics the architecture of macromolecular cellulosome complexes produced by some cellulolytic microbes. A fusion protein between a cellulose-binding module (CBM1(Cel6A)) of the Trichoderma reesei cellobiohydrolase Cel6A and a five-domain staphylococcal protein A (SPA) was constructed to serve as platform for docking of easily detectable reporter proteins onto cellulose surfaces. In turn, the reporter proteins were produced as fusions to two copies of a SPA-binding affinity protein (an affibody denoted Z(SPA-1)), selected from a phage display library constructed by combinatorial protein engineering. In a series of experiments, involving repeated washing and low pH elution, affinity-tagged Enhanced Green Fluorescent Protein (EGFP) and Fusarium solani pisi lipase cutinase reporter proteins were both found to be specifically directed from solution to the same region of a cellulose filter paper where SPA-CBM1(Cel6A) fusion protein had been previously applied. This showed that the SPA-CBM1(Cel6A) fusion protein had been stably anchored to the cellulose surface without loss of binding capacity and that the interaction between SPA and the Z(SPA-1) affibody domains was selective. The generality of this biospecificity-driven system for assembly applications is discussed.
  •  
23.
  • Filonova, Lada, et al. (författare)
  • Analysis of the Surfaces of Wood Tissues and Pulp Fibers Using Carbohydrate-Binding Modules Specific for Crystalline Cellulose and Mannan
  • 2007
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 8:1, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1HjCel7A) and mannans (CBM27TmMan5 and CBM35CjMan5C) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1HjCel7A was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1HjCel7A revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27TmMan5 and CBM35CjMan5C CBMs were found to be more specific reagents than a monoclonal antibody specific for (1→4)-β-mannan/galacto-(1→4)-β-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.
  •  
24.
  •  
25.
  • Filonova, Lada, et al. (författare)
  • Mapping of crystalline cellulose and mannan on the surfaces of wood tissues and pulp fibers using carbohydrate binding modules
  • 2007
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 8:1, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1 -> 4)-beta-mannan/galacto-(1 -> 4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.
  •  
26.
  •  
27.
  • Fugelstad, Johanna, et al. (författare)
  • Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity
  • 2009
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1087-1845 .- 1096-0937. ; 46:10, s. 759-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose biosynthesis is a vital but yet poorly understood biochemical process in Oomycetes. Here, we report the identification and characterization of the cellulose synthase genes (CesA) from Saprolegnia monoica. Southern blot experiments revealed the occurrence of three CesA homologues in this species and phylogenetic analyses confirmed that Oomycete CesAs form a clade of their own. All gene products contained the D,D,D,QXXRW signature of most processive glycosyltransferases, including cellulose synthases. However, their N-terminal ends exhibited Oomycete-specific domains, i.e. Pleckstrin Homology domains, or conserved domains of an unknown function together with additional putative transmembrane domains. Mycelial growth was inhibited in the presence of the cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile or Congo Red. This inhibition was accompanied by a higher expression of all CesA genes in the mycelium and increased in vitro glucan synthase activities. Altogether, our data strongly suggest a direct involvement of the identified CesA genes in cellulose biosynthesis.
  •  
28.
  • Geisler-Lee, Jane, et al. (författare)
  • Poplar carbohydrate-active enzymes. Gene identification and expression analyses.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 946-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.
  •  
29.
  • Gray-Mitsumune, Madoka, et al. (författare)
  • Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen
  • 2008
  • Ingår i: Plant Biotechnology Journal. - : Wiley. - 1467-7644 .- 1467-7652. ; 6:1, s. 62-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Expansins are primary agents inducing cell wall extension, and are therefore obvious targets in biotechnological applications aimed at the modification of cell size in plants. In trees, increased fibre length is a goal of both breeding and genetic engineering programmes. We used an alpha-expansin PttEXPA1 that is highly abundant in the wood-forming tissues of hybrid aspen (Populus tremula L. x P. tremuloides Michx.) to evaluate its role in fibre elongation and wood cell development. PttEXPA1 belongs to Subfamily A of alpha-expansins that have conserved motifs at the N- and C-termini of the mature protein. When PttEXPA1 was over-expressed in aspen, an extract of the cell wall-bound proteins of the transgenic plants exhibited an increased expansin activity on cellulose-xyloglucan composites in vitro, indicating that PttEXPA1 is an active expansin. The transgenic lines exhibited increased stem internode elongation and leaf expansion, and larger cell sizes in the leaf epidermis, indicating that PttEXPA1 protein is capable of increasing the growth of these organs by enhancing cell wall expansion in planta. Wood cell development was also modified in the transgenic lines, but the effects were different for vessel elements and fibres, the two main cell types of aspen wood. PttEXPA1 stimulated fibre, but not vessel element, diameter growth, and marginally increased vessel element length, but did not affect fibre length. The observed differences in responsiveness to expansin of these cell types are discussed in the light of differences in their growth strategies and cell wall composition.
  •  
30.
  • Gray-Mitsumune, Madoka, et al. (författare)
  • Expansins abundant in secondary xylem belong to subgroup a of the alpha-expansin gene family (1 w )
  • 2004
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 135:3, s. 1552-1564
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiation of xylem cells in dicotyledonous plants involves expansion of the radial primary cell walls and intrusive tip growth of cambial derivative cells prior to the deposition of a thick secondary wall essential for xylem function. Expansins are cell wall-residing proteins that have an ability to plasticize the cellulose-hemicellulose network of primary walls. We found expansin activity in proteins extracted from the cambial region of mature stems in a model tree species hybrid aspen (Populus tremula X Populus tremuloides Michx). We identified three a-expansin genes (PttEXP1, PttEXP2, and PttEXP8) and one beta-expansin gene (PttEXPB1) in a cambial region expressed sequence tag library, among which PttEXP1 was most abundantly represented. Northern-blot analyses in aspen vegetative organs and tissues showed that PttEXP1 was specifically expressed in mature stems exhibiting secondary growth, where it was present in the cambium and in the radial expansion zone. By contrast, PttEXP2 was mostly expressed in developing leaves. In situ reverse transcription-PCR provided evidence for accumulation of mRNA of PttEXP1 along with ribosomal rRNA at the tips of intrusively growing xylem fibers, suggesting that PttEXP1 protein has a role in intrusive tip growth. An examination of tension wood and leaf cDNA libraries identified another expansin, PttEXP5, very similar to PttEXP1, as the major expansin in developing tension wood, while PttEXP3 was the major expansin expressed in developing leaves. Comparative analysis of expansins expressed in woody stems in aspen, Arabidopsis, and pine showed that the most abundantly expressed expansins share sequence similarities, belonging to the subfamily A of alpha-expansins and having two conserved motifs at the beginning and end of the mature protein, RIPVG and KNFRV, respectively. This conservation suggests that these genes may share a specialized, not yet identified function.
  •  
31.
  • Gullfot, Fredrika, 1967-, et al. (författare)
  • Design of GH16 XET/XEH chimeric enzymes with SCHEMA : Manuscript
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This manuscript contains experimental data obtained during a pilot study for the application of the SCHEMA method for structure-guided recombination on PttXET16-34 and TmNXG1, a model system for the evolution of different catalytic routes of GH16 XETs and XEHs. A restricted library of PttXET16-34/TmNXG1 chimeras with high diversity and low calculated SCHEMA disruption was generated based on crossover points identified by the RASPP algorithm. Analysis of the library revealed a bias among certain regions to remain intact and recalcitrant to recombination, in particular the upper and lower β-sheet structures forming the part of the protein that binds the donor substrate. In contrast, sequence diversity was preferentially introduced at the N-terminus, the major part of the acceptor side of the protein, and most of the C-terminal extension characteristic to XET/XEH in the GH16 family. Finally, in order to test the predictive capacity of SCHEMA, six chimeras with low calculated disruption were chosen for subsequent cloning and expression in Pichia pastoris.
  •  
32.
  • Gullfot, Fredrika, 1967- (författare)
  • Synthesis of xyloglucan oligo- and polysaccharides with glycosynthase technology
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Xyloglucans are polysaccharides found as storage polymers in seeds and tubers, and as cross-linking glycans in the cell wall of plants. Their structure is complex with intricate branching patterns, which contribute to the physical properties of the polysaccharide including its binding to and interaction with other glycans such as cellulose. Xyloglucan is widely used in bulk quantities in the food, textile and paper making industries. With an increasing interest in technically more advanced applications of xyloglucan, such as novel biocomposites, there is a need to understand and control the properties and interactions of xyloglucan with other compounds, to decipher the relationship between xyloglucan structure and function, and in particular the effect of different branching patterns. However, due to the structural heterogeneity of the polysaccharide as obtained from natural sources, relevant studies have not been possible to perform in practise. This fact has stimulated an interest in synthetic methods to obtain xyloglucan mimics and analogs with well-defined structure and decoration patterns. Glycosynthases are hydrolytically inactive mutant glycosidases that catalyse the formation of glycosidic linkages between glycosyl fluoride donors and glycoside acceptors. Since its first conception in 1998, the technology is emerging as a useful tool in the synthesis of large, complex polysaccharides. This thesis presents the generation and characterisation of glycosynthases based on xyloglucanase scaffolds for the synthesis of well-defined homogenous xyloglucan oligo- and polysaccharides with regular substitution patterns.
  •  
33.
  • Gustavsson, M., et al. (författare)
  • Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in Pichia pastoris
  • 2001
  • Ingår i: Protein Engineering. - : Oxford University Press (OUP). - 0269-2139 .- 1460-213X. ; 14:9, s. 711-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Fusion proteins composed of a cellulose-binding domain from Neocallimastix patriciarum cellulase A and Candida antarctica lipase B were constructed using different linker peptides. The aim was to create proteolytically stable linkers that were able to join the functional modules without disrupting their function. Six fusion variants containing linkers of 4-44 residues were expressed in Pichia pastoris and analysed. Three variants were found to be stable throughout 7-day cultivations. The cellulose-binding capacities of fusion proteins containing short linkers were slightly lower compared with those containing long linkers. The lipase-specific activities of all variants, in solution or immobilized on to cellulose, were equal to that of the wildtype lipase.
  •  
34.
  • Gustavsson, M. T., et al. (författare)
  • Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase
  • 2005
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 6:1, s. 196-203
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for the modification of cellulose fiber surfaces was developed that used the ability of Candida antarctica lipase B (CALB) to acylate carbohydrates with high regioselectivity, combined with the transglycosylating activity of the Populus tremula x P. tremuloides xyloglucan endotransglycosylase 16A (PttXET16A). Xyloglucan oligosaccharides (XGOs) prepared from tamarind xyloglucan were acylated with CALB as a catalyst and vinyl stearate or gamma-thiobutyrolactone as acyl donors to produce carbohydrate molecules with hydrophobic alkyl chains or reactive sulfhydryl groups, respectively. The modified XGOs were shown to act as glycosyl acceptors in the transglycosylation reaction catalyzed by PttXET16A and could therefore be incorporated into high M-r xyloglucan chains. The resulting xyloglucan molecules exhibited a high affinity for cellulose surfaces, which enabled the essentially irreversible introduction of fatty acid esters or thiol groups to cellulose fibers.
  •  
35.
  • Henriksson, Gunnar, 1965-, et al. (författare)
  • Biotechnology in the forest industry
  • 2009
  • Ingår i: Pulp and Paper Chemistry and Technology. - Berlin : Walter de Gruyter. - 9783110213393 ; , s. 273-300
  • Bokkapitel (refereegranskat)
  •  
36.
  • Henriksson, H., et al. (författare)
  • N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A
  • 2003
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 375, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene encoding a XET (xyloglucan endotransglycosylase) from cauliflower (Brassica oleracea var. botrytis) florets has been cloned and sequenced. Sequence analysis indicated a high degree of similarity to other XET enzymes belonging to glycosyl hydrolase family 16 (GH16). In addition to the conserved GH16 catalytic sequence motif EIDFE, there exists one potential N-linked glycosylation site. which is also highly conserved in XET enzymes from this family. Purification of the corresponding protein from extracts of cauliflower florets allowed the fractionation of a single, pure glycoform. which was analysed by MS techniques. Accurate protein mass determination following the enzymic deglycosylation of this glycoform indicated the presence of a high-mannose-type glycan of the general structure GlcNAc(2)Man(6). LC/MS and MS/MS (tandem MS) analysis provided supporting evidence for this structure and confirmed that the glycosylation site (underlined) was situated close to the predicted catalytic residues in the conserved sequence YLSSTNNEHDEIDFEFLGNRTGQPVILQTNVFTGGK. Heterologous expression in Pichia pastoris produced a range of protein glycoforms, which were, on average, more highly mannosylated than the purified native enzyme. This difference in glycosylation did not influence the apparent enzymic activity of the enzyme significantly. However, the removal of high-mannose glycosylation in recombinant cauliflower XET by endoglycosidase H, quantified by electrospray-ionization MS, caused a 40 % decrease in the transglycosylation activity of the enzyme. No hydrolytic activity was detected in native or heterologously expressed BobXET16A, even when almost completely deglycosylated.
  •  
37.
  •  
38.
  • Henriksson, Maria, 1979- (författare)
  • Production and engineering of a xyloglucan endo-transglycosylase from Populus tremula x tremuloides
  • 2007
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this work was to develop a production process for the enzyme xyloglucan endo-transglycosylase from Populus tremula x tremuloides (PttXET16-34). The natural transglycosylating activity of this enzyme has previously been employed in a XET-Technology. This chemo enzymatic method is useful for biomimetic modification of cellulose surfaces and holds great potential for industrial applications. Thus, it requires that the XET-enzyme can be produced in larger scale.This work also shows how the wildtype PttXET16-34 was modified into a glycosynthase. By mutation of the catalytic nucleophile into an alanine, glycine or serine residue, enzymes capable of synthesising defined xyloglucan fragments were obtained. These defined compounds are very valuable for further detailed studies of xyloglucan active-enzymes, but are also useful in molecular studies of the structurally important xyloglucan-cellulose interaction.A heterologous production system for PttXET16-34 was previously developed in the methylotrophic yeast Pichia pastoris. A methanol-limited fed-batch process was also previously established, but the yield of active XET was low due to proteolysis problems and low productivity. Therefore, two alternative fed-batch techniques were investigated for the production of PttXET16-34: a temperature-limited fed-batch (TLFB) and an oxygen-limited high-pressure fed-batch (OLHPFB).For the initial recovery of XET after the fermentation process, two different downstream processes were investigated: expanded bed adsorption (EBA) and cross-flow filtration (CFF).
  •  
39.
  • Hertzberg, M., et al. (författare)
  • A transcriptional roadmap to wood formation
  • 2001
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 98:25, s. 14732-14737
  • Tidskriftsartikel (refereegranskat)abstract
    • The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.
  •  
40.
  • Hrmova, Maria, et al. (författare)
  • Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.)
  • 2009
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:2, s. 437-456
  • Tidskriftsartikel (refereegranskat)abstract
    • A family 16 glycoside hydrolase, xyloglucan xyloglucosyl transferase (EC 2.4.1.207), also known as xyloglucan endotransglycosylase (XET), and designated isoenzyme HvXET6, was purified approximately 400-fold from extracts of young barley seedlings. The complete amino acid sequence of HvXET6 was deduced from the nucleotide sequence of a near full-length cDNA, in combination with tryptic peptide mapping. An additional five to six isoforms or post-translationally modified XET enzymes were detected in crude seedling extracts of barley. The HvXET6 isoenzyme was expressed in Pichia pastoris, characterized and compared with the previously purified native HvXET5 isoform. Barley HvXET6 has a similar apparent molecular mass of 33-35 kDa to the previously purified HvXET5 isoenzyme, but the two isoenzymes differ in their isoelectric points, pH optima, kinetic properties and substrate specificities. The HvXET6 isoenzyme catalyses transfer reactions between xyloglucans and soluble cellulosic substrates, using oligo-xyloglucosides as acceptors, but at rates that are significantly different from those observed for HvXET5. No hydrolytic activity could be detected with either isoenzyme. Comparisons of the reaction rates using xyloglucan or hydroxyethyl cellulose as donors and a series of cellodextrins as acceptors indicated that the acceptor site of HvXET can accommodate five glucosyl residues. Molecular modelling supported this conclusion and further confirmed the ability of the enzyme's active site to accommodate xyloglucan and cellulosic substrates. The two HvXETs followed a ping-pong (Bi, Bi) rather than a sequential reaction mechanism.
  •  
41.
  • Jahic, Mehmedalija, et al. (författare)
  • Process technology for production and recovery of heterologous proteins with Pichia pastoris
  • 2006
  • Ingår i: Biotechnology progress (Print). - : Wiley. - 8756-7938 .- 1520-6033. ; 22:6, s. 1465-1473
  • Forskningsöversikt (refereegranskat)abstract
    • Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion.
  •  
42.
  •  
43.
  •  
44.
  • Johansson, P., et al. (författare)
  • Crystallization and preliminary X-ray analysis of a xyloglucan endotransglycosylase from Populus tremula x tremuloides
  • 2003
  • Ingår i: Acta Crystallographica Section D. - 0907-4449 .- 1399-0047. ; 59, s. 535-537
  • Tidskriftsartikel (refereegranskat)abstract
    • Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls. Recombinant XET from poplar has been purified from a Pichia pastoris expression system and crystallized. Two different crystal forms were obtained by vapour diffusion from potassium sodium tartrate and from an imidazole buffer using sodium acetate as a precipitant. Data were collected from these crystal forms to 3.5 and 2.1 Angstrom resolution, respectively. The first crystal form was found to belong to space group P3(1)21 or P3(2)21 (unit-cell parameters a = 98.6, b = 98.6, c = 98.5 Angstrom) and the second crystal form to space group P6(3) (unit-cell parameters a = 188.7, b = 188.7, c = 46.1 Angstrom).
  •  
45.
  •  
46.
  • Jonsson Rudsander, Ulla, et al. (författare)
  • Comparative NMR analysis of cellooligosaccharide hydrolysis by GH9 bacterial and plant endo-1,4-ss-glucanases
  • 2008
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 47:18, s. 5235-5241
  • Tidskriftsartikel (refereegranskat)abstract
    • H-1 NMR spectroscopy has been used to analyze the product profiles arising from the hydrolysis of cellooligosaccharides by family GH9 cellulases. The product profiles obtained with the wild type and several active site mutants of a bacterial processive endoglucanase, Tf Cel9A, were compared with those obtained by a randomly acting plant endoglucanase, PttCe19A. PttCe19A is an orthologue of the Arabidopsis endocellulase, Korrigan, which is required for efficient cellulose biosynthesis. As expected, poplar PttCe19A was shown to catalyze the degradation of cellooligosaccharides by inversion of the configuration of the anomeric carbon. The product analyses showed that the number of interactions between the glucose units of the substrate and the aromatic residues in the enzyme active sites determines the point of cleavage in both enzymes.
  •  
47.
  • Jonsson Rudsander, Ulla, 1973- (författare)
  • Functional studies of a membrane-anchored cellulase from poplar
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details. This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana. Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario. The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus.
  •  
48.
  • Kaewthai, Nomchit, et al. (författare)
  • Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris
  • 2010
  • Ingår i: PLANT BIOTECHNOLOGY. - : Japanese Society for Plant Cell and Molecular Biology. - 1342-4580 .- 1347-6114. ; 27:3, s. 251-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterologous expression of plant genes, particularly those encoding carbohydrate-active enzymes such as glycoside hydrolases and glycosyl transferases, continues to be a major hurdle in the functional analysis of plant proteomes. Presently, there are few convenient systems for the production of recombinant plant enzymes in active form and at adequate levels for biochemical and structural characterization. The methylotrophic yeast Pichia pastoris is an attractive expression host due to its ease of manipulation and its capacity to perform post-translational protein modifications, such as N-glycosylation [Daly and Hearn (2005) J Mol Recognit 18: 119-138]. Here, we demonstrate the utility of the P. pastoris SMD1168H/pPICZ-alpha C system for the expression of a range of xyloglucan endo-transglycosylase/hydrolase (XTH) cDNAs from barley (Hordeum vulgare). Although stable transformants were readily obtained by positive selection for vector-induced antibiotic resistance for all of the nine constructs tested, only five isoforms were secreted as soluble proteins into the culture medium, four in active form. Furthermore, production levels of these five isoforms were found to be variable, depending on the transformant, which further underscores the necessity of screening multiple clones for expression of active enzyme. Failure to express certain XTH isoforms in P. pastoris could not be correlated with any conserved gene or protein sequence properties, and this precluded using rational sequence engineering to enhance heterologous expression of the cDNAs. Thus, while significant advances are reported here, systems for the heterologous production of plant proteins require further development.
  •  
49.
  • Kallas, Åsa, 1974- (författare)
  • Heterologous expression, characterization and applications of carbohydrate active enzymes and binding modules
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wood and wood products are of great economical and environmental importance, both in Sweden and globally. Biotechnology can be used both for achieving raw material of improved quality and for industrial processes such as biobleaching. Despite the enormous amount of carbon that is fixed as wood, the knowledge about the enzymes involved in the biosynthesis, re-organization and degradation of plant cell walls is relatively limited. In order to exploit enzymes more efficiently or to develop new biotechnological processes, it is crucial to gain a better understanding of the function and mechanism of the enzymes. This work has aimed to increase the knowledge about some of the enzymes putatively involved in the wood forming processes in Populus. Xyloglucan endotransglycosylases and a putative xylanase represent transglycosylating and hydrolytic enzymes, respectively. Carbohydrate binding modules represent non-catalytic modules, which bind to the substrate. Among 24 genes encoding for putative xyloglucan endotransglycosylases or xyloglucan endohydrolases that were identified in the Populus EST database, two were chosen for further studies (PttXTH16-34 and PttXTH16-35). The corresponding proteins, PttXET16-34 and PttXET16-35, were expressed in P. pastoris, purified and biochemically characterized. The importance of the N-glycans was investigated by comparing the recombinant wild-type proteins with their deglycosylated counterparts. In order to obtain the large amounts of PttXET16-34 that were needed for crystallization and development of biotechnological applications, the conditions for the large-scale production of PttXET16-34 in a fermenter were optimized. In microorganisms, endo-(1,4)-β-xylanases are important members of the xylan degrading machinery. These enzymes are also present in plants where they might fulfill a similar, but probably more restrictive function. One putative endo-(1,4)-β-xylanase, denoted PttXYN10A, was identified in the hybrid aspen EST library. Sequence analysis shows that this protein contains three putative carbohydrate-binding modules (CBM) from family 22 in addition to the catalytic module from GH10. Heterologous expression and reverse genetics were applied in order to elucidate the function of the catalytic module as well as the binding modules of PttXYN10A. Just as in microorganisms, some of the carbohydrate active enzymes from plants have one or more CBM attached to the catalytic module. So far, a very limited number of plant CBMs has been biochemically characterized. A detailed bio-informatic analysis of the CBM family 43 revealed interesting modularity patterns. In addition, one CBM43 (CBM43PttGH17_84) from a putative Populus b-(1,3)-glucanase was expressed in E. coli and shown to bind to laminarin (β-(1,3)-glucan), mixed-linked β-(1,3)(1,4)-glucans and crystalline cellulose. Due to their high specificity for different carbohydrates, CBMs can be used as probes for the analysis of plant materials. Generally, they are more specific than both staining techniques and carbohydrate-binding antibodies. We have used cellulose- and mannan binding modules from microorganisms as tools for the analysis of intact fibers as well as processed pulps.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 103
Typ av publikation
tidskriftsartikel (73)
annan publikation (10)
doktorsavhandling (5)
licentiatavhandling (4)
forskningsöversikt (3)
bokkapitel (3)
visa fler...
patent (3)
konferensbidrag (2)
visa färre...
Typ av innehåll
refereegranskat (78)
övrigt vetenskapligt/konstnärligt (22)
populärvet., debatt m.m. (3)
Författare/redaktör
Teeri, Tuula T. (73)
Brumer, Harry (39)
Teeri, Tuula (28)
Zhou, Qi (11)
Baumann, Martin J. (10)
Sundberg, Björn (9)
visa fler...
Aspeborg, Henrik (9)
Djerbi, Soraya (9)
Ezcurra, Ines (9)
Bulone, Vincent (7)
Mellerowicz, Ewa (7)
Kallas, Åsa (7)
Kallas, Åsa M. (7)
Piens, Kathleen (7)
Denman, Stuart (7)
Winzell, Anders (7)
Arvestad, Lars (6)
Mellerowicz, Ewa J. (6)
Blomqvist, Kristina (6)
Henriksson, Hongbin (6)
Lehtio, J (5)
Denman, S. (5)
Daniel, Geoffrey (4)
Malmström, Eva (4)
Johansson, Patrik (4)
Divne, Christina (4)
Koivula, A. (4)
Filonova, Lada (4)
Greffe, Lionel (4)
Nilsson, Peter (3)
Sundberg, B. (3)
Johansson, Gunnar (3)
Enfors, Sven-Olof (3)
Sterky, Fredrik (3)
Hult, Anders (3)
Nygren, Per-Åke (3)
Jones, T. Alwyn (3)
Schrader, Jarmo (3)
Banasiak, Alicja (3)
Czjzek, Mirjam (3)
Piens, K. (3)
Sinnott, M. L. (3)
Martinelle, Mats (3)
Boer, H. (3)
Jahic, Mehmedalija (3)
Guerriero, Gea (3)
Fauré, Régis (3)
Takahashi Schmidt, J ... (3)
Awano, Tatsuya (3)
Ratke, Christine (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (97)
Uppsala universitet (7)
Umeå universitet (5)
Sveriges Lantbruksuniversitet (4)
RISE (2)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (102)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Teknik (30)
Naturvetenskap (24)
Lantbruksvetenskap (12)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy