SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teipel S.) "

Sökning: WFRF:(Teipel S.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  • Lista, S., et al. (författare)
  • Evolving Evidence for the Value of Neuroimaging Methods and Biological Markers in Subjects Categorized with Subjective Cognitive Decline
  • 2015
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 48
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evolving evidence that individuals categorized with subjective cognitive decline (SCD) are potentially at higher risk for developing objective and progressive cognitive impairment compared to cognitively healthy individuals without apparent subjective complaints. Interestingly, SCD, during advancing preclinical Alzheimer's disease (AD), may denote very early, subtle cognitive decline that cannot be identified using established standardized tests of cognitive performance. The substantial heterogeneity of existing SCD-related research data has led the Subjective Cognitive Decline Initiative (SCD-I) to accomplish an international consensus on the definition of a conceptual research framework on SCD in preclinical AD. In the area of biological markers, the cerebrospinal fluid signature of AD has been reported to be more prevalent in subjects with SCD compared to healthy controls; moreover, there is a pronounced atrophy, as demonstrated by magnetic resonance imaging, and an increased hypometabolism, as revealed by positron emission tomography, in characteristic brain regions affected by AD. In addition, SCD individuals carrying an apolipoprotein epsilon 4 allele are more likely to display AD-phenotypic alterations. The urgent requirement to detect and diagnose AD as early as possible has led to the critical examination of the diagnostic power of biological markers, neurophysiology, and neuroimaging methods for AD-related risk and clinical progression in individuals defined with SCD. Observational studies on the predictive value of SCD for developing AD may potentially be of practical value, and an evidence-based, validated, qualified, and fully operationalized concept may inform clinical diagnostic practice and guide earlier designs in future therapy trials.
  •  
4.
  •  
5.
  •  
6.
  • Cavedo, E, et al. (författare)
  • The Road Ahead to Cure Alzheimer's Disease: Development of Biological Markers and Neuroimaging Methods for Prevention Trials Across all Stages and Target Populations
  • 2014
  • Ingår i: The journal of prevention of Alzheimer's disease. - : SERDI. - 2274-5807. ; 1:3, s. 181-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a slowly progressing non-linear dynamic brain disease in which pathophysiological abnormalities, detectable in vivo by biological markers, precede overt clinical symptoms by many years to decades. Use of these biomarkers for the detection of early and preclinical AD has become of central importance following publication of two international expert working group's revised criteria for the diagnosis of AD dementia, mild cognitive impairment (MCI) due to AD, prodromal AD and preclinical AD. As a consequence of matured research evidence six AD biomarkers are sufficiently validated and partly qualified to be incorporated into operationalized clinical diagnostic criteria and use in primary and secondary prevention trials. These biomarkers fall into two molecular categories: biomarkers of amyloid-beta (Aβ) deposition and plaque formation as well as of tau-protein related hyperphosphorylation and neurodegeneration. Three of the six gold-standard ("core feasible) biomarkers are neuroimaging measures and three are cerebrospinal fluid (CSF) analytes. CSF Aβ 1-42 (Aβ1-42), also expressed as Aβ1-42 : Aβ1- 40 ratio, T-tau, and P-tau Thr181 & Thr231 proteins have proven diagnostic accuracy and risk enhancement in prodromal MCI and AD dementia. Conversely, having all three biomarkers in the normal range rules out AD. Intermediate conditions require further patient follow-up. Magnetic resonance imaging (MRI) at increasing field strength and resolution allows detecting the evolution of distinct types of structural and functional abnormality pattern throughout early to late AD stages. Anatomical or volumetric MRI is the most widely used technique and provides local and global measures of atrophy. The revised diagnostic criteria for “prodromal AD” and "mild cognitive impairment due to AD" include hippocampal atrophy (as the fourth validated biomarker), which is considered an indicator of regional neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in regions of interest, such as the hippocampus and in an exploratory fashion, observer and hypothesis-indedendent, throughout the entire brain. Evolving modalities such as diffusion-tensor imaging (DTI) and advanced tractography as well as resting-state functional MRI provide useful additionally useful measures indicating the degree of fiber tract and neural network disintegration (structural, effective and functional connectivity) that may substantially contribute to early detection and the mapping of progression. These modalities require further standardization and validation. The use of molecular in vivo amyloid imaging agents (the fifth validated biomarker), such as the Pittsburgh Compound-B and markers of neurodegeneration, such as fluoro-2-deoxy-D-glucose (FDG) (as the sixth validated biomarker) support the detection of early AD pathological processes and associated neurodegeneration. How to use, interpret, and disclose biomarker results drives the need for optimized standardization. Multimodal AD biomarkers do not evolve in an identical manner but rather in a sequential but temporally overlapping fashion. Models of the temporal evolution of AD biomarkers can take the form of plots of biomarker severity (degree of abnormality) versus time. AD biomarkers can be combined to increase accuracy or risk. A list of genetic risk factors is increasingly included in secondary prevention trials to stratify and select individuals at genetic risk of AD. Although most of these biomarker candidates are not yet qualified and approved by regulatory authorities for their intended use in drug trials, they are nonetheless applied in ongoing clinical studies for the following functions: (i) inclusion/exclusion criteria, (ii) patient stratification, (iii) evaluation of treatment effect, (iv) drug target engagement, and (v) safety. Moreover, novel promising hypothesis-driven, as well as exploratory biochemical, genetic, electrophysiological, and neuroimaging markers for use in clinical trials are being developed. The current state-of-the-art and future perspectives on both biological and neuroimaging derived biomarker discovery and development as well as the intended application in prevention trials is outlined in the present publication.
  •  
7.
  • Frisoni, G. B., et al. (författare)
  • Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers
  • 2017
  • Ingår i: Lancet Neurology. - 1474-4422 .- 1474-4465. ; 16:8, s. 661-676
  • Tidskriftsartikel (refereegranskat)abstract
    • The diagnosis of Alzheimer's disease can be improved by the use of biological measures. Biomarkers of functional impairment, neuronal loss, and protein deposition that can be assessed by neuroimaging (ie, MRI and PET) or CSF analysis are increasingly being used to diagnose Alzheimer's disease in research studies and specialist clinical settings. However, the validation of the clinical usefulness of these biomarkers is incomplete, and that is hampering reimbursement for these tests by health insurance providers, their widespread clinical implementation, and improvements in quality of health care. We have developed a strategic five-phase roadmap to foster the clinical validation of biomarkers in Alzheimer's disease, adapted from the approach for cancer biomarkers. Sufficient evidence of analytical validity (phase 1 of a structured framework adapted from oncology) is available for all biomarkers, but their clinical validity (phases 2 and 3) and clinical utility (phases 4 and 5) are incomplete. To complete these phases, research priorities include the standardisation of the readout of these assays and thresholds for normality, the evaluation of their performance in detecting early disease, the development of diagnostic algorithms comprising combinations of biomarkers, and the development of clinical guidelines for the use of biomarkers in qualified memory clinics.
  •  
8.
  • König, Alexandra, et al. (författare)
  • Screening over Speech in Unselected Populations for Clinical Trials in AD (PROSPECT-AD) : Study Design and Protocol
  • 2023
  • Ingår i: Journal of Prevention of Alzheimer's Disease. - : SERDI. - 2274-5807. ; 10, s. 314-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Speech impairments are an early feature of Alzheimer’s disease (AD) and consequently, analysing speech performance is a promising new digital biomarker for AD screening. Future clinical AD trials on disease modifying drugs will require a shift to very early identification of individuals at risk of dementia. Hence, digital markers of language and speech may offer a method for screening of at-risk populations that are at the earliest stages of AD, eventually in combination with advanced machine learning. To this end, we developed a screening battery consisting of speech-based neurocognitive tests. The automated test performs a remote primary screening using a simple telephone. Objectives: PROSPECT-AD aims to validate speech biomarkers for identification of individuals with early signs of AD and monitor their longitudinal course through access to well-phenotyped cohorts. Design: PROSPECT-AD leverages ongoing cohorts such as EPAD (UK), DESCRIBE and DELCODE (Germany), and BioFINDER Primary Care (Sweden) and Beta-AARC (Spain) by adding a collection of speech data over the telephone to existing longitudinal follow-ups. Participants at risk of dementia are recruited from existing parent cohorts across Europe to form an AD ‘probability-spectrum’, i.e., individuals with a low risk to high risk of developing AD dementia. The characterization of cognition, biomarker and risk factor (genetic and environmental) status of each research participants over time combined with audio recordings of speech samples will provide a well-phenotyped population for comparing novel speech markers with current gold standard biomarkers and cognitive scores. Participants: N= 1000 participants aged 50 or older will be included in total, with a clinical dementia rating scale (CDR) score of 0 or 0.5. The study protocol is planned to run according to sites between 12 and 18 months. Measurements: The speech protocol includes the following neurocognitive tests which will be administered remotely: Word List [Memory Function], Verbal Fluency [Executive Functions] and spontaneous free speech [Psychological and/ or behavioral symptoms]. Speech features on the linguistic and paralinguistic level will be extracted from the recordings and compared to data from CSF and blood biomarkers, neuroimaging, neuropsychological evaluations, genetic profiles, and family history. Primary candidate marker from speech will be a combination of most significant features in comparison to biomarkers as reference measure. Machine learning and computational techniques will be employed to identify the most significant speech biomarkers that could represent an early indicator of AD pathology. Furthermore, based on the analysis of speech performances, models will be trained to predict cognitive decline and disease progression across the AD continuum. Conclusion: The outcome of PROSPECT-AD may support AD drug development research as well as primary or tertiary prevention of dementia by providing a validated tool using a remote approach for identifying individuals at risk of dementia and monitoring individuals over time, either in a screening context or in clinical trials.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Cedres, N., et al. (författare)
  • Association of Cerebrovascular and Alzheimer Disease Biomarkers With Cholinergic White Matter Degeneration in Cognitively Unimpaired Individuals
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives Several pathologic processes might contribute to the degeneration of the cholinergic system in aging. We aimed to determine the contribution of amyloid, tau, and cerebrovascular biomarkers toward the degeneration of cholinergic white matter (WM) projections in cognitively unimpaired individuals. Methods The contribution of amyloid and tau pathology was assessed through CSF levels of the A beta(42/40) ratio and phosphorylated tau (p-tau). CSF A beta(38) levels were also measured. Cerebrovascular pathology was assessed using automatic segmentations of WM lesions (WMLs) on MRI. Cholinergic WM projections (i.e., cingulum and external capsule pathways) were modeled using tractography based on diffusion tensor imaging data. Sex and APOE epsilon 4 carriership were also included in the analysis as variables of interest. Results We included 203 cognitively unimpaired individuals from the H70 Gothenburg Birth Cohort Studies (all individuals aged 70 years, 51% female). WM lesion burden was the most important contributor to the degeneration of both cholinergic pathways (increase in mean square error [IncMSE] = 98.8% in the external capsule pathway and IncMSE = 93.3% in the cingulum pathway). Levels of A beta(38) and p-tau also contributed to cholinergic WM degeneration, especially in the external capsule pathway (IncMSE = 28.4% and IncMSE = 23.4%, respectively). The A beta(42/40) ratio did not contribute notably to the models (IncMSE<3.0%). APOE epsilon 4 carriers showed poorer integrity in the cingulum pathway (IncMSE = 21.33%). Women showed poorer integrity of the external capsule pathway (IncMSE = 21.55%), which was independent of amyloid status as reflected by the nonsignificant differences in integrity when comparing amyloid-positive vs amyloid-negative women participants (T-201 = -1.55; p = 0.123). Discussion In cognitively unimpaired older individuals, WMLs play a central role in the degeneration of cholinergic pathways. Our findings highlight the importance of WM lesion burden in the elderly population, which should be considered in the development of prevention programs for neurodegeneration and cognitive impairment.
  •  
13.
  •  
14.
  •  
15.
  • Hampel, Harald, et al. (författare)
  • Perspective on Future Role of Biological Markers in Clinical Therapy Trials of Alzheimer's Disease: A Long-Range Point of View Beyond 2020.
  • 2014
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 88:4, s. 426-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in understanding the molecular mechanisms underlying various paths towards the pathogenesis of Alzheimer's disease (AD) has begun to provide new insight for interventions to modify disease progression. The evolving knowledge gained from multidisciplinary basic research has begun to identify new concepts for treatments and distinct classes of therapeutic targets; as well as putative disease-modifying compounds that are now being tested in clinical trials. There is a mounting consensus that such disease modifying compounds and/or interventions are more likely to be effectively administered as early as possible in the cascade of pathogenic processes preceding and underlying the clinical expression of AD. The budding sentiment is that "treatments" need to be applied before various molecular mechanisms converge into an irreversible pathway leading to morphological, metabolic and functional alterations that characterize the pathophysiology of AD. In light of this, biological indicators of pathophysiological mechanisms are desired to chart and detect AD throughout the asymptomatic early molecular stages into the prodromal and early dementia phase. A major conceptual development in the clinical AD research field was the recent proposal of new diagnostic criteria, which specifically incorporate the use of biomarkers as defining criteria for preclinical stages of AD. This paradigm shift in AD definition, conceptualization, operationalization, detection and diagnosis represents novel fundamental opportunities for the modification of interventional trial designs. This perspective summarizes not only present knowledge regarding biological markers but also unresolved questions on the status of surrogate indicators for detection of the disease in asymptomatic people and diagnosis of AD.
  •  
16.
  • Lemercier, P., et al. (författare)
  • Association of plasma A beta 40/A beta 42 ratio and brain A beta accumulation: testing a whole-brain PLS-VIP approach in individuals at risk of Alzheimer's disease
  • 2021
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 107, s. 57-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular and brain regional/network-wise pathophysiological changes at preclinical stages of Alzheimer's disease (AD) have primarily been found through knowledge-based studies conducted in late-stage mild cognitive impairment/dementia populations. However, such an approach may compromise the objective of identifying the earliest spatial-temporal pathophysiological processes. We investigated 261 individuals with subjective memory complaints, a condition at increased risk of AD, to test a whole-brain, non-a-priori method based on partial least squares in unraveling the association between plasma A beta 42/A beta 40 ratio and an extensive set of brain regions characterized through molecular imaging of A beta accumulation and cortical metabolism. Significant associations were mapped onto large-scale networks, identified through an atlas and by knowledge, to elaborate on the reliability of the results. Plasma A beta 42/beta 40 ratio was associated with A beta-PET uptake (but not FDG-PET) in regions generally investigated in preclinical AD such as those belonging to the default mode network, but also in regions/networks normally not accounted including the central executive and salience networks which likely have a selective vulnerability to incipient A beta accumulation. The present whole-brain approach is promising to investigate early pathophysiological changes of AD to fully capture the complexity of the disease, which is essential to develop timely screening, detection, diagnostic, and therapeutic interventions. (C) 2021 Elsevier Inc. All rights reserved.
  •  
17.
  •  
18.
  • Teipel, S., et al. (författare)
  • Association of CSF sTREM2, a marker of microglia activation, with cholinergic basal forebrain volume in major depressive disorder
  • 2021
  • Ingår i: Journal of Affective Disorders. - : Elsevier BV. - 0165-0327. ; 293, s. 429-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Inflammatory mechanisms are believed to contribute to the manifestation of major depressive disorder (MDD). Central cholinergic activity may moderate this effect. Here, we tested if volume of the cholinergic basal forebrain is associated with cerebrospinal fluid (CSF) levels of sTREM2 as a marker of microglial activation in people with late life MDD. Methods: Basal forebrain volume was determined from structural MRI scans and levels of CSF sTREM2 with immunoassay in 29 people with late-life MDD and 20 healthy older controls at baseline and 3 years follow-up. Associations were determined using Bayesian analysis of covariance . Results: We found moderate level of evidence for an association of lower CSF levels of sTREM2 at 3 years follow up with MDD (Bayes factor in favor of an effect = 7.9). This level of evidence prevailed when controlling for overall antidepressant treatment and CSF levels of markers of AD pathology, i.e., A beta 42/A beta 40, ptau181 and total tau. Evidence was in favor of absence of an effect for baseline levels of CSF sTREM2 in MDD cases and for baseline and follow up data in controls. Limitations: The sample size of repeated CSF examinations was relatively small. Therefore, we used Bayesian sequential analysis to assess if effects were affected by sample size. Still, the number of cases was too small to stratify effects for different antidepressive treatments. Conclusions: Our data agree with the assumption that central cholinergic system integrity may contribute to regulation of microglia activity in late-life MDD.
  •  
19.
  • Baumeister, Hannah, et al. (författare)
  • A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
  • Ingår i: Brain : a journal of neurology. - 1460-2156. ; 147:7, s. 2400-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Kleineidam, Luca, et al. (författare)
  • Midlife occupational cognitive requirements protect cognitive function in old age by increasing cognitive reserve
  • 2022
  • Ingår i: Frontiers in Psychology. - : Frontiers Media SA. - 1664-1078. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Several lifestyle factors promote protection against Alzheimer's disease (AD) throughout a person's lifespan. Although such protective effects have been described for occupational cognitive requirements (OCR) in midlife, it is currently unknown whether they are conveyed by brain maintenance (BM), brain reserve (BR), or cognitive reserve (CR) or a combination of them. Methods: We systematically derived hypotheses for these resilience concepts and tested them in the population-based AgeCoDe cohort and memory clinic-based AD high-risk DELCODE study. The OCR score (OCRS) was measured using job activities based on the O*NET occupational classification system. Four sets of analyses were conducted: (1) the interaction of OCR and APOE-ε4 with regard to cognitive decline (N = 2,369, AgeCoDe), (2) association with differentially shaped retrospective trajectories before the onset of dementia of the Alzheimer's type (DAT; N = 474, AgeCoDe), (3) cross-sectional interaction of the OCR and cerebrospinal fluid (CSF) AD biomarkers and brain structural measures regarding memory function (N = 873, DELCODE), and (4) cross-sectional and longitudinal association of OCR with CSF AD biomarkers and brain structural measures (N = 873, DELCODE). Results: Regarding (1), higher OCRS was associated with a reduced association of APOE-ε4 with cognitive decline (mean follow-up = 6.03 years), consistent with CR and BR. Regarding (2), high OCRS was associated with a later onset but subsequently stronger cognitive decline in individuals converting to DAT, consistent with CR. Regarding (3), higher OCRS was associated with a weaker association of the CSF Aβ42/40 ratio and hippocampal volume with memory function, consistent with CR. Regarding (4), OCR was not associated with the levels or changes in CSF AD biomarkers (mean follow-up = 2.61 years). We found a cross-sectional, age-independent association of OCRS with some MRI markers, but no association with 1-year-change. OCR was not associated with the intracranial volume. These results are not completely consistent with those of BR or BM. Discussion: Our results support the link between OCR and CR. Promoting and seeking complex and stimulating work conditions in midlife could therefore contribute to increased resistance to pathologies in old age and might complement prevention measures aimed at reducing pathology.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy