SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ternero Pau) "

Search: WFRF:(Ternero Pau)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bulbucan, Claudiu, et al. (author)
  • Cr-substituted Fe3O4 nanoparticles : The role of particle size in the formation of FexO sub-domains and the emergence of exchange bias
  • 2023
  • In: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853. ; 570
  • Journal article (peer-reviewed)abstract
    • Here we study the influence of particle size on the formation of antiferromagnetic FexO subdomains and the emergence of exchange bias in novel ferrimagnetic Cr-substituted Fe3O4 nanoparticles generated using an aerosol technique based on spark ablation. Cooling in an applied magnetic field across the Néel temperature of the FexO subdomains results in significant shifts in the hysteresis loops, which decrease in magnitude with the particle diameter for the two large systems (D≈20nm&D≈40nm), whereas only minor exchange fields are observed for the smallest system (D≈10nm). The reduced exchange bias is attributed to the metastable FexO's lower volume fraction and size due to a facile transformation into the thermodynamically stable (Fe,Cr)3O4 phase with decreasing particle diameter.
  •  
2.
  • Elmroth Nordlander, Jonas, et al. (author)
  • Mo3Ni2N Nanoparticle Generation by Spark Discharge
  • 2023
  • In: Materials. - : MDPI AG. - 1996-1944. ; 16:3
  • Journal article (peer-reviewed)abstract
    • Spark ablation is an advantageous method for the generation of metallic nanoparticles with defined particle sizes and compositions. The reaction of the metal particles with the carrier gas during the synthesis and, therefore, the incorporation of those light elements into structural voids or even compound formation was confirmed for hydrides and oxides but has only been suspected to occur for nitrides. In this study, dispersed nanoparticles of Mo3Ni2N and Mo with Janus morphology, and defined particle sizes were obtained by spark discharge generation as a result of carrier gas ionization and characterized using transmission electron microscopy and powder X-ray diffraction. Metal nitrides possess beneficial catalytic and thermoelectric properties, as well as high hardness and wear resistance. Therefore, this method offers the possibility of controlled synthesis of materials which are interesting for numerous applications.
  •  
3.
  • Franzén, Sara, et al. (author)
  • Compositional tuning of gas-phase synthesized Pd–Cu nanoparticles
  • 2023
  • In: Nanoscale Advances. - 2516-0230. ; 5:22, s. 6069-6077
  • Journal article (peer-reviewed)abstract
    • Bimetallic nanoparticles have gained significant attention in catalysis as potential alternatives to expensive catalysts based on noble metals. In this study, we investigate the compositional tuning of Pd–Cu bimetallic nanoparticles using a physical synthesis method called spark ablation. By utilizing pure and alloyed electrodes in different configurations, we demonstrate the ability to tailor the chemical composition of nanoparticles within the range of approximately 80 : 20 at% to 40 : 60 at% (Pd : Cu), measured using X-ray fluorescence (XRF) and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDXS). Time-resolved XRF measurements revealed a shift in composition throughout the ablation process, potentially influenced by material transfer between electrodes. Powder X-ray diffraction confirmed the predominantly fcc phase of the nanoparticles while high-resolution TEM and scanning TEM-EDXS confirmed the mixing of Pd and Cu within individual nanoparticles. X-ray photoelectron and absorption spectroscopy were used to analyze the outermost atomic layers of the nanoparticles, which is highly important for catalytic applications. Such comprehensive analyses offer insights into the formation and structure of bimetallic nanoparticles and pave the way for the development of efficient and affordable catalysts for various applications.
  •  
4.
  • Hu, Tianyi, et al. (author)
  • Direct Observation of Liquid–Solid Two-Phase Seed Particle-Assisted Kinking in GaP Nanowire Growth
  • 2023
  • In: Small Structures. - 2688-4062. ; 4:9
  • Journal article (peer-reviewed)abstract
    • In the last decades, the metal-assisted growth approach of semiconductor nanowires (NWs) has shown its potential in controlling crystal properties, such as crystal structure, composition, and morphology. Recently, literature reports have shown successful semiconductor NW growth with multiphase seed particles under growth conditions. Exploring alternative metal seeds and the mechanisms for growing semiconductor NWs is an exciting research field aiming to improve the control over the crystal growth process. Herein, the gallium phosphide (GaP) NW growth using Cu as seed particles inside an environmental transmission electron microscope is studied. In particular, the transformations of the Cu-rich seed particles during the nucleation and growth of GaP NWs are observed. The supply of a relatively high amount of Ga atoms by the precursor mixture led to a solid Cu-rich seed particle core covered by a liquid phase. Different growth dynamics within the two-phase seed particle resulted in local competition in NW growth. As a result, the GaP NW kinked into another growth direction by forming a new interface at the NW growth front. The generated results enable insights into fundamental processes occurring in the seed particle during growth, creating leverage points for controlling the NW morphology.
  •  
5.
  • Petallidou, Klito C., et al. (author)
  • Tuning atomic-scale mixing of nanoparticles produced by atmospheric-pressure spark ablation
  • 2023
  • In: Nanoscale Advances. - 2516-0230. ; 5:24, s. 6880-6886
  • Journal article (peer-reviewed)abstract
    • Nanoparticles (NPs) mixed at the atomic scale have been synthesized by atmospheric-pressure spark ablation using pairs of Pd and Hf electrodes. Gravimetric analysis of the electrodes showed that the fraction of each material in the resulting mixed NPs can be varied from ca. 15-85 at% to 85-15 at% by employing different combinations of electrode polarities and thicknesses. These results were also qualitatively corroborated by microscopy and elemental analysis of the produced NPs. When using pairs of electrodes having the same diameter, the material from the one at negative polarity was represented at a substantially higher fraction in the mixed NPs regardless of whether a pair of thin or thick electrodes were employed. This can be attributed to the higher ablation rate of the electrodes at the negative polarity, as already known from earlier experiments. When using electrodes of different diameters, the fraction of the element from the thinner electrode was always higher. This is because thinner electrodes are ablated more effectively due to, at least in part, the increased importance of the associated heat losses compared to its thicker counterpart. In those cases, the polarity of the electrodes had a significantly smaller effect. Overall, our results demonstrate, for the first time, that spark ablation can be used to control atomic scale mixing and thus produce alloyed NPs with compositions that can be tuned to a good extent by simply using different combinations of electrode diameters and polarities. This expands the capabilities of the technique for producing mixed nanoparticle building blocks of well-defined composition that are highly desired for a wide range of applications.
  •  
6.
  • Sedrpooshan, Mehran, et al. (author)
  • Single-step generation of 1D FeCo nanostructures
  • 2024
  • In: Nano Express. ; 5:2
  • Journal article (peer-reviewed)abstract
    • Magnetic one-dimensional structures are attractive nanomaterials due to the variety of potential applications they can provide. The fabrication of bimetallic 1D structures further expands the capabilities of such structures by tailoring the magnetic properties. Here, a single-step template-free method is presented for the fabrication of 1D FeCo alloy nanochains. In this approach, charged single-crystalline FeCo nanoparticles are first generated by the co-ablation of pure Fe and Co electrodes under a carrier gas at ambient pressures and attracted to a substrate using an electric field. When reaching the surface, the particles are self-assembled into parallel nanochains along the direction of an applied magnetic field. The approach allows for monitoring the self-assembly particle by particle as they are arranged into linear 1D chains with an average length controlled by the deposited particle concentration. Magnetometry measurements revealed that arranging nanoparticles into nanochains results in a 100% increase in the remanent magnetization, indicating significant shape anisotropy. Furthermore, by combining x-ray microscopy and micromagnetic simulations, we have studied the local magnetization configuration along the nanochains. Our findings show that variations in magnetocrystalline anisotropy along the structure play a crucial role in the formation of magnetic domains.
  •  
7.
  • Sedrpooshan, Mehran, et al. (author)
  • Template-free generation and integration of functional 1D magnetic nanostructures
  • 2023
  • In: Nanoscale. - : Royal Society of Chemistry. - 2040-3372 .- 2040-3364.
  • Journal article (peer-reviewed)abstract
    • The direct integration of 1D magnetic nanostructures into electronic circuits is crucial for realizing their great potential as components in magnetic storage, logical devices, and spintronic applications. Here, we present a novel template-free technique for producing magnetic nanochains and nanowires using directed self-assembly of gas-phase-generated metallic nanoparticles. The 1D nanostructures can be self-assembled along most substrate surfaces and can be freely suspended over micrometer distances, allowing for direct incorporation into different device architectures. The latter is demonstrated by a one-step integration of nanochains onto a pre-patterned Si chip and the fabrication of devices exhibiting magnetoresistance. Moreover, fusing the nanochains into nanowires by post-annealing significantly enhances the magnetic properties, with a 35% increase in the coercivity. Using magnetometry, X-ray microscopy, and micromagnetic simulations, we demonstrate how variations in the orientation of the magnetocrystalline anisotropy and the presence of larger multi-domain particles along the nanochains play a key role in the domain formation and magnetization reversal. Furthermore, it is shown that the increased coercivity in the nanowires can be attributed to the formation of a uniform magnetocrystalline anisotropy along the wires and the onset of exchange interactions.
  •  
8.
  • Ternero, Pau, et al. (author)
  • Effect of the carrier gas on the structure and composition of Co–Ni bimetallic nanoparticles generated by spark ablation
  • 2023
  • In: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502. ; 170
  • Journal article (peer-reviewed)abstract
    • Spark ablation is a versatile technique for producing pure size-selected nanoparticles. The carrier gas used in spark ablation affects the nanoparticles’ generation, crystalline structure, and chemical composition. The comprehension of this phenomenon can contribute to the design of nanoparticles with tailored properties. In this paper, we evaluate the effects of reducing (95%N2 + 5%H2), inert (N2), and oxidative (air) carrier gases in a spark ablation setup with Co–Ni alloyed electrodes. The agglomerates’ particle size distribution, morphology, structure, and composition were highly dependent on the carrier gas, especially its relative oxygen content. The agglomerates were then sintered into compacted particles. Three different crystalline structures and chemical compositions were observed with X-ray diffraction and confirmed with transmission electron microscopy for the compacted particles. For 95%N2 + 5%H2 and air, single-phase (Co,Ni) and (Co,Ni)O particles were identified, respectively, whereas for N2, two-phase (Co,Ni) and (Co,Ni)O particles were obtained. This work opens up new possibilities of tuning the structure and composition, i.e., distribution of metallic and oxide phases, of the produced particles and thus tailor their properties for specific applications by simply changing the carrier gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view