SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thern Marcus Docent) "

Sökning: WFRF:(Thern Marcus Docent)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Fredrik, 1980- (författare)
  • Reducing ships' fuel consumption and emissions by learning from data
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the context of reducing both greenhouse gases and hazardous emissions, the shipping sector faces a major challenge as it is currently responsible for 11% of the transport sector’s anthropogenic greenhouse gas emissions. Even as emissions reductions are needed, the demand for the transport sector rises exponentially every year. This thesis aims to investigate the potential to use ships’ existing internal energy systems more efficiently. The thesis focusses on making existing ships in real operating conditions more efficient based logged machinery data. This dissertation presents results that can make ship more energy efficient by utilising waste heat recovery and machine learning tools. A significant part of this thesis is based on data from a cruise ship in the Baltic Sea, and an extensive analysis of the ship’s internal energy system was made from over a year’s worth of data. The analysis included an exergy analysis, which also considers the usability of each energy flow. In three studies, the feasibility of using the waste heat from the engines was investigated, and the results indicate that significant measures can be undertaken with organic Rankine cycle devices. The organic Rankine cycle was simulated with data from the ship operations and optimised for off-design conditions, both regarding system design and organic fluid selection. The analysis demonstrates that there are considerable differences between the real operation of a ship and what it was initially designed for. In addition, a large two-stroke marine diesel was integrated into a simulation with an organic Rankine cycle, resulting in an energy efficiency improvement of 5%. This thesis also presents new methods of employing machine learning to predict energy consumption. Machine learning algorithms are readily available and free to use, and by using only a small subset of data points from the engines and existing fuel flow meters, the fuel consumption could be predicted with good accuracy. These results demonstrate a potential to improve operational efficiency without installing additional fuel meters. The thesis presents results concerning how data from ships can be used to further analyse and improve their efficiency, by using both add-on technologies for waste heat recovery and machine learning applications.
  •  
2.
  • Ahlgren, Fredrik, 1980- (författare)
  • Waste heat recovery in a cruise vessel
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In three studies of a cruise ship the author has investigated waste heat recovery (WHR)from exhaust gases using an organic Rankine cycle (ORC), and also mapped the energyand exergy flows within the ship. Data were collected from the ship’s machinerysystem for a total extent of one year, and this data were used for simulations andenergy calculations. An off-design analysis was made and an ORC was simulated andoptimised with regards to the ship’s operating conditions. The ORC working fluid wasoptimised in terms for maximum electrical production in the off-design condition. Theoff-design analysis showed that the ship speed and power consumption was far fromits original design. The results indicate that there is a potential for significant savingsby using an organic Rankine cycle for waste heat recovery. The energy and exergyanalysis gave a better understanding of the energy flows and showed that the singlelargest exergy destruction occurs in the ship’s diesel engines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy