SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tholerus E.) "

Sökning: WFRF:(Tholerus E.)

  • Resultat 1-50 av 159
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
15.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
16.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
17.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
31.
  • Kim, Hyun-Tae, et al. (författare)
  • Validation of D-T fusion power prediction capability against 2021 JET D-T experiments
  • 2023
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • JET experiments using the fuel mixture envisaged for fusion power plants, deuterium and tritium (D-T), provide a unique opportunity to validate existing D-T fusion power prediction capabilities in support of future device design and operation preparation. The 2021 JET D-T experimental campaign has achieved D-T fusion powers sustained over 5 s in ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. In preparation of the 2021 JET D-T experimental campaign, extensive D-T predictive modelling was carried out with several assumptions based on D discharges. To improve the validity of ITER D-T predictive modelling in the future, it is important to use the input data measured from 2021 JET D-T discharges in the present core predictive modelling, and to specify the accuracy of the D-T fusion power prediction in comparison with the experiments. This paper reports on the validation of the core integrated modelling with TRANSP, JINTRAC, and ETS coupled with a quasilinear turbulent transport model (Trapped Gyro Landau Fluid or QualLiKiz) against the measured data in 2021 JET D-T discharges. Detailed simulation settings and the heating and transport models used are described. The D-T fusion power calculated with the interpretive TRANSP runs for 38 D-T discharges (12 baseline and 26 hybrid discharges) reproduced the measured values within 20 % . This indicates the additional uncertainties, that could result from the measurement error bars in kinetic profiles, impurity contents and neutron rates, and also from the beam-thermal fusion reaction modelling, are less than 20 % in total. The good statistical agreement confirms that we have the capability to accurately calculate the D-T fusion power if correct kinetic profiles are predicted, and indicates that any larger deviation of the D-T fusion power prediction from the measured fusion power could be attributed to the deviation of the predicted kinetic profiles from the measured kinetic profiles in these plasma scenarios. Without any posterior adjustment of the simulation settings, the ratio of predicted D-T fusion power to the measured fusion power was found as 65%-96% for the D-T baseline and 81%-97% for D-T hybrid discharge. Possible reasons for the lower D-T prediction are discussed and future works to improve the fusion power prediction capability are suggested. The D-T predictive modelling results have also been compared to the predictive modelling of the counterpart D discharges, where the key engineering parameters are similar. Features in the predicted kinetic profiles of D-T discharges such as underprediction of ne are also found in the prediction results of the counterpart D discharges, and it leads to similar levels of the normalized neutron rate prediction between the modelling results of D-T and the counterpart D discharges. This implies that the credibility of D-T fusion power prediction could be a priori estimated by the prediction quality of the preparatory D discharges, which will be attempted before actual D-T experiments.
  •  
32.
  • de la Luna, E., et al. (författare)
  • Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 56:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on JET, with both the previous carbon wall (JET-C) and the new Be/W wall (JET-ILW), have demonstrated the efficacy of using a fast vertical plasma motion (known as vertical kicks in JET) for active ELM control. In this paper we report on a series of experiments that have been recently conducted in JET-ILW with the goal of further improving the physics understanding of the processes governing the triggering of ELMs via vertical kicks. This is a necessary step to confidently extrapolate this ELM control method to ITER. Experiments have shown that ELMs can be reliably triggered provided a minimum vertical plasma displacement and velocity is imposed. The magnitude of the minimum displacement depends on the plasma parameters, being smaller for higher pedestal temperatures and lower collisionalities, which is encouraging in view of ITER. Modelling and stability analysis suggest that a localized current density induced by the vertical plasma movement close to the separatrix plays a major role in the ELM triggering mechanism, which is consistent with the experimental observations. The implications of these results for the extrapolation of this ELM control scheme to ITER are discussed.
  •  
33.
  • Delabie, E., et al. (författare)
  • In situ wavelength calibration of the edge CXS spectrometers on JET
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 87:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-Perot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 angstrom, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction.
  •  
34.
  • Fitzgerald, M., et al. (författare)
  • Toroidal Alfven eigenmode stability in JET internal transport barrier afterglow experiments
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we use reduced and perturbative models to examine the stability of toroidal Alfven eigenmodes (TAEs) during the internal transport barrier (ITB) afterglow in JET experiments designed for the observation of alpha driven TAEs. We demonstrate that in JET-like conditions, it is sufficient to use an incompressible cold plasma model for the TAE to reproduce the experimental adiabatic features such as frequency and position. When ion cyclotron resonant heating (ICRH) is used to destabilize TAEs, the core-localised modes that are predicted to be most strongly driven by minority ICRH fast ions correspond to the modes observed in the DD experiments, and conversely, modes that are predicted to not be driven are not observed. Linear damping rates due to a variety of mechanisms acting during the afterglow are calculated, with important contributions coming from the neutral beam and radiative damping. For DT equivalent extrapolations of discharges without ICRH heating, we find that for the majority of modes, alpha drive is not sufficient to overcome radiative damping.
  •  
35.
  • Garzotti, L., et al. (författare)
  • Scenario development for D-T operation at JET
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher additional heating power (32 MW neutral beam injection + 8 MW ion cyclotron resonance heating). There are several challenges presented by operations with the new wall: a general deterioration of the pedestal confinement; the risk of heavy impurity accumulation in the core, which, if not controlled, can cause the radiative collapse of the discharge; the requirement to protect the divertor from excessive heat loads, which may damage it permanently. Therefore, an intense activity of scenario development has been undertaken at JET during the last three years to overcome these difficulties and prepare the plasmas needed to demonstrate stationary high fusion performance and clear alpha particle effects. The paper describes the status and main achievements of this scenario development activity, both from an operational and plasma physics point of view.
  •  
36.
  • Grigore, E., et al. (författare)
  • Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W
  • 2016
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 mu m to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 degrees C and a power density of about 3 MW m(-2). A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.
  •  
37.
  • Lerche, E., et al. (författare)
  • Sawtooth pacing with on-axis ICRH modulation in JET-ILW
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented.
  •  
38.
  • Litaudon, X., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
39.
  • Nardon, E., et al. (författare)
  • On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013).
  •  
40.
  • Nardon, E., et al. (författare)
  • Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D non-linear MHD simulations of a D-2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I-p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.
  •  
41.
  • Packer, L. W., et al. (författare)
  • Activation of ITER materials in JET : nuclear characterisation experiments for the long-term irradiation station
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper details progress in experimental characterisation work at JET for the long-term irradiation station, conducted as part of a project to perform activation experiments using ITER materials. The aim is to take advantage of the significant 14 MeV neutron yield expected during JET operations to irradiate samples of materials that will be used in the manufacturing of ITER tokamak components, such as Nb3Sn, SS316L steels from a range of manufacturers, SS304B, Alloy 660, W, CuCrZr, OF-Cu, XM-19, Al bronze, NbTi and EUROFER. This paper presents an assessment of the nuclear environment at the relevant irradiation locations at JET, measured using a range of high purity dosimetry foils: Ti, Ni, Y, Fe, Co, Sc, and Ta, irradiated with fusion neutrons at JET over a period of 15 months. Experimental results arc presented and compared to simulation predictions using a JET MCNP model coupled with the FISPACT-II inventory code. Comparisons are made for a total of 11 nuclear reactions using a range of nuclear data libraries in calculations.
  •  
42.
  • Pajuste, E., et al. (författare)
  • Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 642-647
  • Tidskriftsartikel (refereegranskat)abstract
    • Tritium depth profile and its temperature programmed desorption rate were determined for selected samples cut out of beryllium tiles removed from the Joint European Torus vacuum vessel during the 2012 shut down. A beryllium dissolution method under controlled conditions was used to determine the tritium depth profile in the samples, whereas temperature programmed desorption experiments were performed to assess tritium release pattern. Released tritium was measured using a proportional gas flow detector. Prior to desorption and dissolution experiments, the plasma-facing surfaces of the samples were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. Experimental results revealed that >95% of the tritium was localized in the top 30 - 45 mu m of the 'plasma-facing' surface, however, possible tritium presence up to 100 mu m cannot be excluded. During temperature programmed desorption at 4.8 K/min in the flow of purge gas He + 0.1% H-2 the tritium release started below 475 K, the most intense release occurred at 725 - 915 K and the degree of detritiation of > 91% can be obtained upon reaching 1075 K. The total tritium activity in the samples was in range of 2 - 32 kilo Becquerel per square centimetre of the plasma-facing surface area.
  •  
43.
  • Peluso, E., et al. (författare)
  • On determining the prediction limits of mathematical models for time series
  • 2016
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Prediction is one of the main objectives of scientific analysis and it refers to both modelling and forecasting. The determination of the limits of predictability is an important issue of both theoretical and practical relevance. In the case of modelling time series, reached a certain level in performance in either modelling or prediction, it is often important to assess whether all the information available in the data has been exploited or whether there are still margins for improvement of the tools being developed. In this paper, an information theoretic approach is proposed to address this issue and quantify the quality of the models and/or predictions. The excellent properties of the proposed indicator have been proved with the help of a systematic series of numerical tests and a concrete example of extreme relevance for nuclear fusion.
  •  
44.
  •  
45.
  • Aho-Mantila, L., et al. (författare)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
46.
  • Angioni, C., et al. (författare)
  • Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
  •  
47.
  • Batistoni, P., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 2 : in-vessel calibration
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
  •  
48.
  • Batistoni, P., et al. (författare)
  • Technical preparations for the in-vessel 14 MeV neutron calibration at JET
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 117, s. 107-114
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy.
  •  
49.
  • Beal, J., et al. (författare)
  • Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall
  • 2016
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.
  •  
50.
  • Bernardo, J., et al. (författare)
  • Ion temperature and toroidal rotation in JET's low torque plasmas
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 159

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy