SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thuvander Mattias) "

Sökning: WFRF:(Thuvander Mattias)

  • Resultat 1-50 av 142
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aboulfadl, Hisham, 1986, et al. (författare)
  • Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells - Insight from Theory and Experiment
  • 2021
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 13:6, s. 7188-7199
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.
  •  
2.
  • Aboulfadl, Hisham, et al. (författare)
  • Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells
  • 2019
  • Ingår i: Microscopy and Microanalysis. - : CAMBRIDGE UNIV PRESS. - 1435-8115 .- 1431-9276. ; 25:2, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface sulfurization of Cu(In,Ga)Se 2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500°C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to ∼7 at% with traces of diffusion outwards into the grain interior.
  •  
3.
  • Adegoke, Olutayo, et al. (författare)
  • Scanning electron microscopy and atom probe tomography characterization of laser powder bed fusion precipitation strengthening nickel-based superalloy
  • 2023
  • Ingår i: Micron. - 0968-4328 .- 1878-4291. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Atom probe tomography (APT) was utilized to supplement scanning electron microscopy (SEM) characterizationof a precipitation strengthening nickel-based superalloy, Alloy 247LC, processed by laser powder bed fusion (LPBF). It was observed that the material in the as-built condition had a relatively high strength. Using both SEMand APT, it was concluded that the high strength was not attributed to the typical precipitation strengtheningeffect of γ’. In the absence of γ’ it could be reasonably inferred that the numerous black dots observed in thecells/grains with SEM were dislocations and as such should be contributing significantly to the strengthening.Thus, the current investigation demonstrated that relatively high strengthening can be attained in L-PBF even inthe absence of precipitated γ’. Even though γ’ was not precipitated, the APT analysis displayed a nanometer scalepartitioning of Cr that could be contributing to the strengthening. After heat-treatment, γ’ was precipitated and itdemonstrated the expected high strengthening behavior. Al, Ta and Ti partitioned to γ’. The strong partitioningof Ta in γ’ is indicative that the element, together with Al and Ti, was contributing to the strain-age crackingoccurring during heat-treatment. Cr, Mo and Co partitioned to the matrix γ phase. Hf, Ta, Ti and W were found inthe carbides corroborating previous reports that they are MC. 
  •  
4.
  • Angseryd, Jenny, 1979, et al. (författare)
  • Quantitative APT analysis of Ti(C,N)
  • 2011
  • Ingår i: Ultramicroscopy. - : Elsevier BV. - 1879-2723 .- 0304-3991. ; 111:6, s. 609-614
  • Tidskriftsartikel (refereegranskat)abstract
    • A specially produced Ti(C,N) standard material, with a known nominal composition, was investigated with laser assisted atom probe tomography. The occurrence of molecular ions and single/multiple events was found to be influenced by the laser pulse energy, and especially C related events were affected. Primarily two issues were considered when the composition of Ti(C,N) was determined. The first one is connected to detector efficiency, due to the detector dead-time. The second one is connected to peak overlap in the mass spectrum. A method is proposed for quantification of the C content in order to establish the C/N ratio. A correction was made to the major C peaks, C at 6 and 12 Da, with the 13C isotopes, at 6.5 and 13 Da, according to the known natural abundance. In addition, a correction of the peak at 24 Da, where C and Ti overlap, is proposed based on the occurrence of single/multiple events for respective element. The results were compared to the results from other techniques such as electron energy loss spectroscopy, chemical analysis and X-ray diffraction. After applying the corrections, atom probe tomography results were satisfactory. Furthermore, the content of dissolved O in Ti(C,N) was successfully quantified. © 2011 Elsevier B.V.
  •  
5.
  • Baghdadchi, Amir, et al. (författare)
  • Effect of Ni content on 475°C embrittlement of directed energy deposited duplex stainless steel using a laser beam and wire feedstock
  • 2024
  • Ingår i: Materialia. - 2589-1529. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Duplex stainless steel (DSS), specifically the 2209 grade, is increasingly employed in additive manufacturing, particularly in processes like directed energy deposition using a laser beam with wire (DED-LB/w). However, a significant challenge arises when DSS faces brittleness within the temperature range of 250–500 °C. This study employs advanced characterization techniques, including atom probe tomography (APT) and transmission electron microscopy (TEM), to investigate DSS embrittlement after aging at 400 °C for up to 1000 h. The hardness analysis revealed that the higher Ni content in DED-LB/w-fabricated DSS cylinder promotes the age hardening compared to 2205 wrought DSS plate. Furthermore, APT and TEM demonstrated that, alongside the decomposition of ferrite into Fe-rich (α) and Cr-rich (αʹ) phases, clustering of Ni, Mn, and Si atoms contributes to the embrittlement. Although the Ni-Mn-Si-rich clusters could suggest nucleation of G-phase, the G-phase crystal structure was not observed by TEM. This might be attributed to the short aging time or limitations in the characterization technique. This work underscores the impact of characterization techniques on the measurement of spinodal decomposition, with APT providing capability of detecting nanometer sized clusters. By elucidating the complexities of 475 °C-embrittlement in DED-LB/w DSS, this study offers valuable insights for industrial applications and a deeper understanding of age hardening in duplex DSSs under specific manufacturing conditions.
  •  
6.
  • Bjurman, Martin, et al. (författare)
  • Microstructural evolution of welded stainless steels on integrated effect of thermal aging and low flux irradiation
  • 2019
  • Ingår i: Minerals, Metals and Materials Series. - : Springer International Publishing. - 2367-1696 .- 2367-1181. ; Part F11, s. 703-710
  • Konferensbidrag (refereegranskat)abstract
    • The combined effect of thermal aging and irradiation on cast and welded stainless steel solidification structures is not sufficiently investigated. From theory and consecutive aging and irradiation experiments, the effect of simultaneous low rate irradiation and thermal aging is expected to accelerate and modify the aging processes of the ferrite phase. Here, a detailed analysis of long-term aged material at very low fast neutron flux at LWR operating temperatures using Atom Probe Tomography is presented. Samples of weld material from various positions in the core barrel of the Zorita PWR are examined. The welds have been exposed to 280–285 °C for 38 years at three different neutron fluxes between 1 × 10 −5 and 7 × 10 −7 dpa/h to a total dose of 0.15–2 dpa. The aging of the ferrite phase occurs by spinodal decomposition, clustering and precipitation of e.g. G-phase. These phenomena are characterized and quantitatively analyzed in order to understand the effect of flux in combination with thermal aging.
  •  
7.
  • Bjurman, Martin, et al. (författare)
  • Phase separation study of in-service thermally aged cast stainless steel – atom probe tomography
  • 2015
  • Ingår i: International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. - : Canadian Nuclear Society (CNS). - 9781510813953
  • Konferensbidrag (refereegranskat)abstract
    • Embrittlement of Duplex Stainless Steels by thermal aging shortens the service life of structural components in LWRs. This is an important issue when life extension programs are aiming at 60-80 years in service. Cast and welded austenitic stainless steels, which contain some ferrite, are known to be affected by thermal aging. Historically, many LWR components of complex geometry have been cast in the Mo-containing quality CF8M. Aging is attributed to two types ofphase transformations; Demixing of the ferrite by spinodal decomposition into Cr-rich ´ and Fe-rich  regions; and precipitation of G-phase, carbides and other secondary phases.A study was conducted on two in-service aged large casting CF8M elbows exposed for 72 kh at 291ºC and 325ºC, respectively, followed by 22 kh at a reduced service temperature. Atom Probe Tomography was used to characterize the decomposition of the ferrite for both aging states. Spinodal decomposition and nucleation of precipitates, i.e. G-phase, have been identified. The extent of phase transformation increases with exposure temperature, and the mechanical properties follow the same trend.
  •  
8.
  • Boll, Torben, 1979, et al. (författare)
  • An APT investigation of an amorphous Cr-B-C thin film
  • 2015
  • Ingår i: Ultramicroscopy. - : Elsevier BV. - 1879-2723 .- 0304-3991. ; 159, s. 217-222
  • Tidskriftsartikel (refereegranskat)abstract
    • A magnetron sputtered amorphous Cr-B-C thin film was investigated by means of atom probe tomography (APT). The film is constituted of two phases; a Cr-rich phase present as a few nanometer large regions embedded in a Cr-poor phase (tissue phase). The Cr-rich regions form columnar chains oriented parallel to the growth direction of the film. It was found that the Cr-rich regions have a higher B:C ratio than the Cr-poor regions. The composition of the phases was determined as approximately 35Cr-33B-30C and 15Cr-40B-42C (at%), respectively. The results suggest that this type of nanocomposite films has a more complex structure than previously anticipated, which may have an importance for the mechanical and electrical properties.
  •  
9.
  • Boåsen, Magnus, et al. (författare)
  • Analysis of thermal embrittlement of a low alloy steel weldment using fracture toughness and microstructural investigations
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A thermally aged low alloy steel is investigated in terms of its fracture toughness and microstructural evolution and compared to a reference. The main purpose of the study is to investigate the effects of thermal embrittlement on the brittle fracture toughness, and its effects on the influence of loss of crack tip constraint. Ageing appears to enable brittle fracture initiation from grain boundaries besides initiation from second phase particles, making the fracture toughness distribution bimodal as a result. The consequence is that the constraint effect is significantly reduced when grain boundary initiation dominates the toughness distribution, as compared to the reference material where the constraint effect is significant. The microstructure is investigated at the nano scale using atom probe tomography where nanometer sized Cu-rich clusters are found primarily situated on dislocation lines.
  •  
10.
  • Boåsen, Magnus, et al. (författare)
  • Analysis of thermal embrittlement of a low alloy steel weldment using fracture toughness and microstructural investigations
  • 2022
  • Ingår i: Engineering Fracture Mechanics. - : Elsevier BV. - 0013-7944 .- 1873-7315. ; 262
  • Tidskriftsartikel (refereegranskat)abstract
    • A thermally aged low alloy steel weld metal is investigated in terms of its fracture toughness and microstructural evolution and compared to a reference. The main purpose of the study is to investigate the effects of embrittlement due to thermal ageing on the brittle fracture toughness, and its effects on the influence of loss of crack tip constraint. The comparison of the investigated materials has been made at temperatures that give the same median fracture toughness of the high constraint specimens, ensuring comparability of the low constraint specimens. Ageing appears to enable brittle fracture initiation from grain boundaries besides initiation from second phase particles, making the fracture toughness distribution bimodal. Consequently, this appears to reduce the facture toughness of the low constraint specimens of the aged material as compared to the reference material. The microstructure is investigated at the nano scale using atom probe tomography where nanometer sized Ni-Mn-rich clusters, precipitated during ageing, are found primarily situated on dislocation lines.
  •  
11.
  • Bushlya, Volodymyr, et al. (författare)
  • Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale
  • 2021
  • Ingår i: CIRP Annals - Manufacturing Technology. - : Elsevier BV. - 1726-0604 .- 0007-8506. ; 70:1, s. 73-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, PcBN tooling have been successfully introduced in machining Ni-based superalloys, yet our knowledge of involved wear mechanisms remains limited. In this study, an in-depth investigation of PcBN tool degradation and related wear mechanisms when machining Inconel 718 was performed. Diffusional dissolution of cBN is an active wear mechanism. At high cutting speed oxidation of cBN becomes equally important. Apart from degradation, tool protection phenomena were also discovered. Oxidation of Inconel 718 resulted in formation of γ-Al2O3 and (Al,Cr,Ti)3O4 spinel that were deposited on the tool rake. Also on the rake, formation of (Ti,Nb,Cr)N takes place due to cBN-workpiece interaction. This creates a sandwich tool protection layer forming continuously as tool wear progresses. Such in operando protection enabled counterbalancing tool wear mechanisms and achieved high performance of PcBN in machining.
  •  
12.
  • Cengiz, Sezgin, 1984, et al. (författare)
  • Effect of Ce addition on microstructure, thermal and mechanical properties of Al-Si alloys
  • 2023
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, commercial Al–12Si and Al-12Si-xCe (x = 0.5, 1, 2, 4, 8 and 12 wt% Ce) alloys were synthesized and the effect of cerium (Ce) content on the microstructure and on thermal and mechanical properties of the alloys was systematically investigated. The coefficient of thermal expansion decreased from 25.9 × 10−6 K−1 to 23.3 × 10−6 K−1 (50–493 °C) with increasing amount of Ce in the alloys. XRD analyses revealed that α-Al, Si, and CuZn5 were present in all of the alloys. The addition of Ce resulted in the formation of Al9FeSi3, Al0.85CeSi1.15 and AlCeSi2. The chemical composition of the alloy and the existing phases was investigated with energy dispersive spectroscopy in a scanning electron microscope at micrometer scale and with atom probe tomography at nanometer scale in three dimensions. Ce was found to be exist within eutectic Si and Ce-rich intermetallic phases. The addition of 2 wt% Ce into the Al-12Si alloy improved the ultimate tensile strength of the alloy by 25–30%. Further Ce addition (4–12 wt%) resulted in a dramatic drop in the strength of the alloy. The low ductility of the Al-12Si alloy was remarkably improved for the alloys containing Ce up to 2 wt%.
  •  
13.
  • Cengiz, Sezgin, 1984, et al. (författare)
  • Effects of Nb on borosiliciding of CoCrFeNiNb x high-entropy alloy
  • 2023
  • Ingår i: Vacuum. - : Elsevier BV. - 0042-207X. ; 207
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of Nb addition (2, 5, 10 at. %) on the borosiliciding behavior of CoCrFeNiNbx high-entropy alloy was studied. Vacuum arc melted CoCrFeNiNbx alloys consisted of FCC and Laves-C14 phases. The increase of Nb in the alloys resulted in a decrease of the amount of FCC phase and an increase of the amount of Laves phase. A multiphase boride layer (BL) and a silicon-rich layer (SL) were evident with the formation of Ni2Si, FeB, Fe2B, Co2B, Cr5B3, Nb5Si3 and NbB2 phases after the thermochemical treatment. The Nb5Si3 and NbB2 phase formation was caused by the Nb addition into the CoCrFeNi alloy. The thickness of the SL + BL dramatically decreased, and the thickness of the transition zone/diffusion zone (DZ) decreased with increasing Nb content. The Nb content in the alloys hinders the inward diffusion of Si/B atoms and decreases the Si/B penetration depth. The total layer thicknesses were 45 μm, 27 μm and 12 μm for the alloys containing 2, 5 and 10 at. % Nb, respectively. The surface hardness values of alloys increased after surface treatment.
  •  
14.
  • Cengiz, Sezgin, 1984, et al. (författare)
  • The Effect of Hf Addition on the Boronizing and Siliciding Behavior of CoCrFeNi High Entropy Alloys
  • 2022
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a boronizing and siliciding process on CoCrFeNiHf0.1–0.42 high entropy alloys was examined in this study. When increasing the amount of added Hf in CoCrFeNiHfx, the structure of the alloys gradually transformed from single-phase FCC to firstly Ni7Hf2 + FCC, and finally to C15 Laves and FCC phases. The boronizing/siliciding process resulted in the formation of a silicon-rich layer and a boride layer (BL). Increasing the amount of Hf in the alloys resulted in a decrease in the combined layer thickness, which was measured for CoCrFeNi, CoCrFeNiHf0.1, CoCrFeNiHf0.2, and CoCrFeNiHf0.42 to be 70 µm, 63 µm, 20 µm, and 15 µm, respectively. In contrast, the thickness of the transition zone/diffusion zone increased with more Hf in the alloys. While silicon atoms were gathered close to the BL, they were not transferred into the CoCrFeNi substrate. In contrast to the observation for CoCrFeNi, Si atoms penetrated through the Ni-rich phase (Ni7Hf2) in the CoCrFeNiHfx alloys. Furthermore, the Cr-B rich area (Cr5B3) in the coating limited the transport of Si into the CoCrFeNiHfx substrates. XRD analysis showed that the BL contained Ni2Si, FeB, Fe2B, Co2B, and Cr5B3 phases.
  •  
15.
  •  
16.
  • Charatsidou, Elina, et al. (författare)
  • Proton irradiation-induced cracking and microstructural defects in UN and (U,Zr)N composite fuels
  • 2024
  • Ingår i: Journal of Materiomics. - : Elsevier. - 2352-8478 .- 2352-8486. ; 10:4, s. 906-918
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton irradiation with a primary ion energy of 2 MeV was used to simulate radiation damage in UN and (U,Zr)N fuel pellets. The pellets, nominally at room temperature, were irradiated to peak levels of 0.1, 1, 10 dpa and 100.0 dpa resulting in a peak hydrogen concentration of at most 90 at. %. Microstructure and mechanical properties of the samples were investigated and compared before and after irradiation. The irradiation induced an increase in hardness, whereas a decrease in Young’s modulus was observed for both samples. Microstructural characterization revealed irradiation-induced cracking, initiated in the bulk of the material, where the peak damage was deposited, propagating towards the surface. Additionally, transmission electron microscopy was used to study irradiation defects. Dislocation loops and fringes were identified and observed to increase in density with increasing dose levels. The high density of irradiation defects and hydrogen implanted are proposed as the main cause of swelling and consequent sample cracking, leading simultaneously to increased hardening and a decrease in Young's modulus.
  •  
17.
  • Claesson, Erik, et al. (författare)
  • Carbide Precipitation during Processing of Two Low-Alloyed Martensitic Tool Steels with 0.11 and 0.17 V/Mo Ratios Studied by Neutron Scattering, Electron Microscopy and Atom Probe
  • 2022
  • Ingår i: Metals. - Basel, Switzerland : MDPI AG. - 2075-4701. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Two industrially processed low-alloyed martensitic tool steel alloys with compositions Fe-0.3C-1.1Si-0.81Mn-1.5Cr-1.4Ni-1.1Mo-0.13V and Fe-0.3C-1.1Si-0.81Mn-1.4Cr-0.7Ni-0.8Mo-0.14V (wt.%) were characterized using small-angle neutron scattering (SANS), scanning electron microscopy (SEM), Scanning transmission electron microscopy (STEM), and atom probe tomography (APT). The combination of methods enables an understanding of the complex precipitation sequences that occur in these materials during the processing. Nb-rich primary carbides form at hot working, while Fe-rich auto-tempering carbides precipitate upon quenching, and cementite carbides grow during tempering when Mo-rich secondary carbides also nucleate and grow. The number density of Mo-rich carbides increases with tempering time, and after 24 h, it is two to three orders of magnitude higher than the Fe-rich carbides. A high number density of Mo-rich carbides is important to strengthen these low-alloyed tool steels through precipitation hardening. The results indicate that the Mo-rich secondary carbide precipitates are initially of MC character, whilst later they start to appear as M2C. This change of the secondary carbides is diffusion driven and is therefore mainly seen for longer tempering times at the higher tempering temperature of 600◦C.
  •  
18.
  • Claesson, Erik, et al. (författare)
  • Evolution of iron carbides during tempering of low-alloy tool steel studied with polarized small angle neutron scattering, electron microscopy and atom probe
  • 2022
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 194, s. 112464-112464
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic scattering of iron carbides in low-alloy tool steel was investigated ex-situ by polarized small angle neutron scattering measurements after tempering the steel at 550 °C and 600 °C. Magnetic features could be detected in the as-quenched sample resulting in a negative interference term, believed to be either θ-Fe3C, η-Fe2C, or ε-Fe2-3C. During tempering the evolution of cementite could be studied by the variation of the interference term and in γ-ratio, which is the ratio of the magnetic to nuclear scattering length density contrast. From scanning transmission electron microscopy (STEM) and atom probe tomography, it is evident that cementite (θ-Fe3C) is present directly when reaching the tempering temperature of either 550 °C or 600 °C. At longer tempering times, cementite gets enriched with substitutional elements like chromium and manganese, forming an enriched shell on the cementite particles. STEM and energy dispersive x-ray spectrometry show that the chemical composition of small cementite particles approaches that of Cr-rich M7C3 carbides after 24 h at 600 °C. It is also seen that small non-magnetic particles precipitate during tempering and these correspond well with molybdenum and vanadium-rich carbides.
  •  
19.
  • De Knoop, Ludvig, 1972, et al. (författare)
  • Electric-field-controlled reversible order-disorder switching of a metal tip surface
  • 2018
  • Ingår i: Physical Review Materials. - 2475-9953. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is well established that elevated temperatures can induce surface roughening of metal surfaces, the effect of a high electric field on the atomic structure at ambient temperature has not been investigated in detail. Here we show with atomic resolution using in situ transmission electron microscopy how intense electric fields induce reversible switching between perfect crystalline and disordered phases of gold surfaces at room temperature. Ab initio molecular dynamics simulations reveal that the mechanism behind the structural change can be attributed to a vanishing energy cost in forming surface defects in high electric fields. Our results demonstrate how surface processes can be directly controlled at the atomic scale by an externally applied electric field, which promotes an effective decoupling of the topmost surface layers from the underlying bulk. This opens up opportunities for development of active nanodevices in, e.g., nanophotonics and field-effect transistor technology as well as fundamental research in materials characterization and of yet unexplored dynamically controlled low-dimensional phases of matter.
  •  
20.
  • Dong, Yan, et al. (författare)
  • Atom Probe Tomography Interlaboratory Study on Clustering Analysis in Experimental Data Using the Maximum Separation Distance Approach
  • 2019
  • Ingår i: Microscopy and Microanalysis. - 1435-8115 .- 1431-9276. ; 25:2, s. 356-366
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the findings from an interlaboratory study conducted between ten international research groups and investigate the use of the commonly used maximum separation distance and local concentration thresholding methods for solute clustering quantification. The study objectives are: to bring clarity to the range of applicability of the methods; identify existing and/or needed modifications; and interpretation of past published data. Participants collected experimental data from a proton-irradiated 304 stainless steel and analyzed Cu-rich and Ni-Si rich clusters. The datasets were also analyzed by one researcher to clarify variability originating from different operators. The Cu distribution fulfills the ideal requirements of the maximum separation method (MSM), namely a dilute matrix Cu concentration and concentrated Cu clusters. This enabled a relatively tight distribution of the cluster number density among the participants. By contrast, the group analysis of the Ni-Si rich clusters by the MSM was complicated by a high Ni matrix concentration and by the presence of Si-decorated dislocations, leading to larger variability among researchers. While local concentration filtering could, in principle, tighten the results, the cluster identification step inevitably maintained a high scatter. Recommendations regarding reporting, selection of analysis method, and expected variability when interpreting published data are discussed.
  •  
21.
  • Dömstedt, Peter, et al. (författare)
  • New Alumina Forming Martensitic Steels
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The work presents a new category of alloys, Alumina Forming Martensitic (AFM) steels, developed for new clean energy power applications such as thermal solar power and Gen IV nuclear power. The aim was to combine the superior corrosion resistance of the alumina scale with the excellent creep properties of the martensitic structure. The alloys were exposed to liquid lead at 550°C for 1824 hours to evaluate their oxidation properties. In addition, the microstructures were analysed in annealed conditions and after the exposure to assess phase stabilities. Using a variety of characterisation techniques, the studies identified Al-rich oxides formed on the surfaces of both specimens after the exposure with no lead penetration. Moreover, martensite, NiAl precipitates, and different carbides were observed in both alloys.
  •  
22.
  • Ejenstam, J., et al. (författare)
  • Microstructural stability of Fe-Cr-Al alloys at 450-550 degrees C
  • 2015
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 457, s. 291-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from alpha-alpha' phase separation and embrittlement when subjected to temperatures up to 500 degrees C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 degrees C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.
  •  
23.
  • Ejenstam, Jesper, et al. (författare)
  • Microstructural stability of Fe–Cr–Al alloys at 450–550 °C
  • 2015
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 457, s. 291-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron–Chromium–Aluminium (Fe–Cr–Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe–Cr–Al alloys suffer from α–α′ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe–Cr–Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe–10Cr–(4–8)Al alloys and a Fe–21Cr–5Al were thermally aged in the temperature interval of 450–550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe–Cr–Al system was developed. No phase separation was observed in the Fe–10Cr–(4–8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.
  •  
24.
  • Engberg, David L. J., 1986-, et al. (författare)
  • Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2
  • 2019
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 156
  • Tidskriftsartikel (refereegranskat)abstract
    • The microstructure of stoichiometric ZrB2.0 and B over-stoichiometric ZrB2.5 thin films has been studied using atom probe tomography (APT), X-ray diffraction, and transmission electron microscopy. Both films consist of columnar ZrB2 grains with AlB2-type crystal structure. The narrow stoichiometry range of ZrB2 results in the presence of separate disordered B-rich boundaries even in ZrB2.0. At higher average B content, specifically ZrB2.5, the formation of a continuous network around the sides of the ZrB2 columns is promoted. In addition, the APT field evaporation characteristics of ZrB2 and its influence on the measured local composition has been studied and compared to the average composition from elastic recoil detection analysis (ERDA). Differences in the measured average compositions of the two techniques are explained by the APT detector dead-time/space. A new pile-up pairs correction procedure based on co-evaporation correlation data was thus employed here for the APT data and compared with the 10B-method (the B equivalence of the 13C-method), as well as the combination of both methods. In ZrB2.0, all of the applied compositional correction methods were found to reduce the compositional difference when appropriate isotopic abundances were used. In ZrB2.5, the inhomogeneity of the film likely increased the local APT composition to such an extent that even conservative correction procedures overestimated the B content compared to the ERDA reference. The strengths of the pile-up pairs correction compared the 10B and the combined methods are higher precision, due to it being less dependent on the accuracy of estimated isotopic abundances, and that the correction itself is not dependent on careful background correction of the mass spectrum.
  •  
25.
  • Engberg, David L. J., et al. (författare)
  • Solid Solution and Segregation Effects in Arc-Deposited Ti1-xSixN Thin Films Resolved on the nanometer scale by 15N Isotopic Substitution in AtomP robe Tomography
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Nanostructured TiSiN is an important material in wear--‐resistant coatings for extending the lifetime of cutting tools. Yet, the understanding regarding the structure, phase composition, and bonding on the detailed nanometer scale, which determines the properties of TiSiN, is lacking. This limits our understanding of the growth phenomena and eventually a larger exploitation of the material. By substituting natN2 with 15N2 during reactive arc deposition of TiSiN thin films, atom probe tomography (APT) gives elemental sensitivity and sub-nanometer resolution, a finer scale than what can be obtained by commonly employed energy dispersive electron spectroscopy in scanning transmission electron microscopy. Using a combination of analytical transmission electron microscopy and APT we show that arc-deposited Ti0.92Si0.0815N and Ti0.81Si0.1915N exhibit Si segregation on the nanometer scale in the alloy films. APT composition maps and proximity histograms from domains with higher than average Ti content show that the TiN domains contain at least ~2 at. % Si for Ti0.92Si0.08N and ~5 at. % Si for Ti0.81Si0.19N, thus confirming the formation of solid solutions. The formation of relatively pure SiNy domains in the Ti0.81Si0.19N films is tied to pockets between microstructured, columnar features in the film. Finer SiNy enrichments seen in APT possibly correspond to tissue layers around TiN crystallites, thus effectively hindering growth of TiN crystallites, causing TiN renucleation and thus explaining the featherlike nanostructure within the columns of these films. For the stoichiometry of the TiN phase, we establish a global under stoichiometry, in accordance with the tendency for SiNy films to have tetrahedral bonding coordination towards a nominal Si3N4 composition.
  •  
26.
  • Engberg, David, et al. (författare)
  • Resolving mass spectral overlaps in atom probe tomography by isotopic substitutions – case of TiSi15N
  • 2018
  • Ingår i: Ultramicroscopy. - : Elsevier BV. - 1879-2723 .- 0304-3991. ; 184, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectral overlaps in atom probe tomography (APT) analyses of complex compounds typically limit the identification of elements and microstructural analysis of a material. This study concerns the TiSiN system, chosen because of severe mass-to-charge-state ratio overlaps of the 14 N + and 28 Si 2+ peaks as well as the 14N 2 + and 28 Si + peaks. By substituting 14 N with 15 N, mass spectrum peaks generated by ions composed of one or more N atoms will be shifted toward higher mass-to-charge-state ratios, thereby enabling the separation of N from the predominant Si isotope. We thus resolve thermodynamically driven Si segregation on the nanometer scale in cubic phase Ti 1- x Si x 15 N thin films for Si contents 0.08 ≤ x ≤ 0.19 by APT, as corroborated by transmission electron microscopy. The APT analysis yields a composition determination that is in good agreement with energy dispersive X-ray spectroscopy and elastic recoil detection analyses. Additionally, a method for determining good voxel sizes for visualizing small-scale fluctuations is presented and demonstrated for the TiSiN system.
  •  
27.
  • Eriksson, Gustav, 1994, et al. (författare)
  • Atomically Resolved Interfacial Analysis of Bone-Like Hydroxyapatite Nanoparticles on Titanium
  • 2023
  • Ingår i: Advanced NanoBiomed Research. - 2699-9307. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium is commonly used for medical devices, including osseointegrating implants, owing to its biocompatibility and mechanical properties. Nanostructuring titanium implants is known to enhance the healing process by promoting bone growth on the implant surface. Hydroxyapatite nanoparticles, resembling natural bone mineral, have been used to further improve osseointegration. While previous studies have investigated the osseointegration of titanium implants using atom probe tomography, limited research has focused on the attachment of synthetic hydroxyapatite to titanium. Herein, electron microscopy and atom probe tomography are used to reveal the assembly of synthetic hydroxyapatite nanoparticles in the titanium oxide surface. By sputter coating with chromium, a suitable matrix is formed for detailed interfacial analysis. The results demonstrate the diffusion of calcium, phosphorus, and carbon from hydroxyapatite nanoparticles into the titanium oxide surface. Titanium is commonly used for medical devices, owing to its biocompatibility and mechanical properties. Nanostructuring titanium implants with hydroxyapatite nanoparticles, resembling natural bone mineral, enhances the healing process by promoting bone growth on the implant surface. Herein, atom probe tomography reveals the assembly of synthetic hydroxyapatite nanoparticles in the titanium oxide surface.image & COPY; 2023 WILEY-VCH GmbH
  •  
28.
  • Eriksson, Gustav, 1994, et al. (författare)
  • Silica-embedded Gold Nanoparticles Analyzed by Atom Probe Tomography
  • 2024
  • Ingår i: Microscopy and Microanalysis. - 1435-8115 .- 1431-9276. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticles are utilized in a multitude of applications due to their unique properties. Consequently, characterization of nanoparticles is crucial, and various methods have been employed in these pursuits. One such method is Atom Probe Tomography (APT). However, existing sample preparation techniques for APT generally involve embedding of the nanoparticles in a matrix different from their environment in solutions or at solid-liquid interfaces. In this work, we demonstrate a methodology based on silica embedding and explore how it can be utilized to form a matrix for nanoparticles suitable for APT analysis. Through chemisorption to a surface, gold nanoparticles were densely packed, ensuring a high probability of encountering at least one particle in the APT analyses. The nanoparticle-covered surface was embedded in a silica film, replacing the water and thus making this method suitable for studying nanoparticles in their hydrated state. The nanoparticle's silver content and its distribution, originating from the nanoparticle synthesis, could be identified in the APT analysis. Sodium clusters, possibly originating from the sodium citrate used to stabilize the particles in solution, were observed on the nanoparticle surfaces. This indicates the potential for silica embedding to be used for studying ligands on nanoparticles in their hydrated state. Graphical Abstract
  •  
29.
  • Eriksson, Johan, 1987, et al. (författare)
  • An atom probe tomography study of the chemistry of radiation-induced dislocation loops in Zircaloy-2 exposed to boiling water reactor operation
  • 2021
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 550
  • Tidskriftsartikel (refereegranskat)abstract
    • This study is complementary to previous atom probe tomography (APT) studies of irradiation effects in the zirconium alloy Zircaloy-2. Using APT in voltage pulse mode, a difference in morphology was observed between clusters of Fe and Ni and clusters of Fe and Cr in Zircaloy-2 exposed to a high fast neutron fluence in a commercial boiling water reactor. The Fe–Ni clusters were disc-shaped with a diameter of 5–15 nm, whereas the Fe–Cr clusters were spheroidal with a diameter of approximately 5 nm. Both types of clusters appeared to be located at irradiation-induced -type dislocation loops aligned in layers normal to the -direction. The concentration of Fe was higher in the Fe–Cr clusters than in the Fe–Ni clusters. The dilute Fe–Ni clusters, which seem to be segregation of Fe and Ni inside the loops, had formed on all three families of first-order prismatic planes with some deviation from perfect -axis alignment. The Fe–Cr clusters might be very small precipitates with a nucleation associated with the loops.
  •  
30.
  • Eriksson, Johan, 1987, et al. (författare)
  • Nanoscale chemistry of Zircaloy-2 exposed to three and nine annual cycles of boiling water reactor operation — an atom probe tomography study
  • 2022
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 561
  • Tidskriftsartikel (refereegranskat)abstract
    • Atom probe tomography was used in this work to study the metal close to the metal/oxide interface in the zirconium alloy Zircaloy-2 exposed to three and nine annual cycles of operation in a commercial boiling water reactor. The two exposure times correspond to before and after the onset of acceleration in corrosion, hydrogen pickup, and growth. The alloying elements Sn, Fe, Cr, and Ni were observed to be redistributed after exposure. After both three and nine cycles, clusters containing Fe and Cr and typically of a spheroidal shape with an approximate diameter of 5 nm were observed to be located in layers presumed to be layers of -loops. On average, the cluster number density was slightly higher after nine cycles, with larger and more Cr-rich clusters. However, there were large grain-to-grain variations, which were larger than the differences between the two exposure times. Ni was only occasionally observed in the clusters. Sn was observed to be slightly enriched in the Fe–Cr clusters, but the Sn concentration was higher between than inside the layers of clusters. After nine cycles, clusters of Sn were detected in regions that were depleted of Fe and Cr. Enrichment of Sn, Fe, and Ni at features that appeared to be -component loops was observed after nine cycles, whereas no such features were observed after three cycles. Enrichment of Sn and Fe, and small amounts of Cr and Ni, was observed at grain boundaries after both exposure times. After three cycles, a partially dissolved second phase particle of Zr(Fe,Cr)2 type that contained about ten times more Cr than Fe was observed.
  •  
31.
  • Eriksson, Johan, 1987, et al. (författare)
  • Solute Concentrations in the Matrix of Zirconium Alloys Studied by Atom Probe Tomography
  • 2023
  • Ingår i: ASTM Special Technical Publication. - 0066-0558. ; STP1645, s. 149-172
  • Konferensbidrag (refereegranskat)abstract
    • This work indicates that the matrix content of the alloying elements iron, chromium, and nickel in as-produced commercial Zircaloy-2-type materials is lower than what has been indicated by many previous studies. Atom probe tomography in voltage pulse mode was used to study the matrix content of solutes in Zircaloy-2 of type LK3/L and a similar model alloy, called Alloy 2, of the same heat treatment. Both alloys were analyzed in the as-produced state and after reactor exposure. In the as-produced materials, the concentrations of iron, chromium, and nickel were all below the detection limits of around 10 wt. ppm. After reactor exposure, these alloying elements were observed to reside in clusters at loops, and the matrix content (including clusters) of iron had increased to about 1,200 wt. ppm in the fueled region of the rod and to about half that value in the plenum region. The chromium content in the fueled region was approximately 100 wt. ppm, and the nickel content was approximately 200 wt. ppm. In the plenum region, the content of these elements was lower. However, due to an uneven distribution of clusters, there was a wide scatter in the measured concentrations in the irradiated materials. Additionally, the matrix concentrations of solute elements in (nonirradiated) Zircaloy-2 were investigated for a series of samples subjected to a annealing at 770◦C followed by cooling at different rates. From these measurements, the solubilities at 770◦C were estimated to be around 65 wt. ppm for chromium, at least 37 wt. ppm for iron, and below 9 wt. ppm for nickel. Slow cooling resulted in virtually no iron, chromium, or nickel in the matrix. The concentration of aluminum in the matrix was observed to be between 10 and 20 wt. ppm for all a-annealed samples and for the as-produced materials of commercial heat treatment.
  •  
32.
  • Fazi, Andrea, 1992, et al. (författare)
  • Characterization of as-deposited cold sprayed Cr-coating on Optimized ZIRLO™ claddings
  • 2021
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • As-produced Cr-coated Optimized ZIRLO™ cladding material fabricated with the cold-spray (CS) deposition process is studied. Cross-sectional electron microscopy, nano-hardness profiling, transmission electron microscopy, transmission Kikuchi diffraction, and atom probe tomography (APT) were performed to investigate the nature of the CS Cr-coating/Optimized ZIRLO™ interface, the microstructure of the coating, and the effects of the deposition on the Zr-substrate microstructure. The former surface of the Zr-substrate was found to have a highly deformed nano-crystalline microstructure, the formation of which was attributed to dynamic recrystallization occurring during coating deposition. This microstructural change, evaluated with electron backscattered diffraction and nano-hardness profiling, appeared to be confined to a depth of a few microns. Through APT analysis, a 10–20 nm thick intermixed bonding region was observed at the interface between coating and substrate. The chemical composition of this region suggests that this layer originated from a highly localized shearing and heating of a thin volume of the outermost former surface of the substrate. The study of the intermixed bonding region's crystalline structure was performed with high resolution transmission electron microscopy and revealed a distorted hexagonal close-packed structure.
  •  
33.
  • Fazi, Andrea, 1992, et al. (författare)
  • Cold sprayed Cr-coating on Optimized ZIRLO™ claddings: the Cr/Zr interface and its microstructural and chemical evolution after autoclave corrosion testing
  • 2022
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 560
  • Tidskriftsartikel (refereegranskat)abstract
    • Cr-coated Optimized ZIRLO™ cladding material fabricated with the cold-spray deposition process is studied. Microstructure and chemistry of this material are investigated before and after exposure to autoclave corrosion testing with scanning electron microscopy, energy dispersive spectroscopy analysis, electron backscattered diffraction, transmission electron microscopy and atom probe tomography. The results are used to assess what changes have occurred upon autoclave exposure. The formation of a compact, 80 – 100 nm thick Cr2O3 layer is observed on the surface of the exposed samples. Nucleation of ZrCr2 intermetallic phase is discovered at the Cr/Zr interface. This Laves phase nucleates inside the intermixed bonding layer that can be found in both pristine and exposed samples, and decorates the interface in the form of small particles (less than 50 nm in size). Using transmission electron microscopy and atom probe tomography the growth of a Zr-Cr-Fe phase was detected. This phase is found in the region of the Zr-substrate immediately adjacent to the coating, up to a few hundred nanometres distance from the Cr/Zr interface. A small degree of recrystallization occurs upon autoclave exposure in the 1-2 µm thick nanocrystalline layer produced on the Zr-substrate by the cold spray deposition method utilized for the fabrication of the Cr-coating.
  •  
34.
  • Fazi, Andrea, 1992, et al. (författare)
  • Comparing CrN and TiN Coatings for Accident-Tolerant Fuels in PWR and BWR Autoclaves
  • 2022
  • Ingår i: Journal of Nuclear Engineering. - : MDPI AG. - 2673-4362. ; 3:4, s. 321-332
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of coatings for accident-tolerant fuels (ATFs) for light water reactor (LWR) applications promises improved corrosion resistance under accident conditions and better performances during operation. CrN and TiN coatings are characterized by high wear resistance coupled with good corrosion resistance properties. They are generally used to protect materials in applications where extreme conditions are involved and represent promising candidates for ATF. Zr cladding tubes coated with 5 µm-thick CrN or TiN, exposed in an autoclave to simulated PWR chemistry and BWR chemistry, were characterized with SEM, EDS, and STEM. The investigation focused on the performance and oxidation mechanisms of the coated claddings under simulated reactor chemistry. Both coatings provided improved oxidation resistance in a simulated PWR environment, where passivating films of Cr2O3 and TiO2, less than 1 µm-thick, formed on the CrN and TiN outer surfaces, respectively. Under the more challenging BWR conditions, any formed Cr2O3 dissolved into the oxidizing water, resulting in the complete dissolution of the CrN coating. For the TiN coating, the formation of a stable TiO2 film was observed under BWR conditions, but the developed oxide film was unable to stop the flux of oxygen to the substrate, causing the oxidation of the substrate.
  •  
35.
  • Fazi, Andrea, 1992, et al. (författare)
  • CrN–NbN nanolayered coatings for enhanced accident tolerant fuels in BWR
  • 2023
  • Ingår i: Journal of Nuclear Materials. - 0022-3115. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • The accident tolerant fuel (ATF) concept has emerged in the years after the 2011 Fukushima accident as part of a renewed effort in research for light water reactors. The primary focus is to further improve safety measures under and beyond design basis accident conditions, and to improve fuel cladding performance in normal operation. The application of a coating on zirconium claddings can achieve both these aims without extensive changes to the reactor design. Metallic chromium coatings have been profusely studied as solution for pressurized water reactors, but the search for an effective ATF coating able to withstand the environment inside boiling water reactors (BWRs) is still ongoing. In this work, two different versions of a novel nitride coating composition were studied. Zirconium claddings coated with 8 µm thick layers of superlattice CrN–NbN and a nanolayered CrN–NbN were tested in autoclave under BWR operating conditions for 60 days. Scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, electron back-scattered diffraction, x-ray diffraction, and atom probe tomography were employed to characterize as-deposited and autoclaved samples of these two materials. During exposure, both coating versions formed a stable, dense and passivating oxide scale (200–300 nm thick) on the surface, demonstrating improved oxidation protection under operating conditions. Some differences in the oxide growth mechanism were observed between the superlattice and the nanolayered CrN–NbN coatings, which allowed to glimpse at the effect of the layer thickness on the oxidation protection provided by these coatings. The nano-structured morphology of both coatings remained unaffected by the autoclave test, but a 35 nm thick Zr-Cr-N phase was found at the coating-substrate interface of the superlattice CrN–NbN coated cladding.
  •  
36.
  • Fazi, Andrea, 1992, et al. (författare)
  • Performance and evolution of cold spray Cr-coated optimized ZIRLO™ claddings under simulated loss-of-coolant accident conditions
  • 2023
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of Cr-coated Optimized ZIRLO™ as accident tolerant fuel cladding material for pressurized water reactors (PWRs) is assessed. The coating oxidation mechanisms, oxide stability, and the transformation of the Cr-coating/Optimized ZIRLO™ interface are among the studied phenomena. For this purpose, samples were exposed at 1200°C in steam for 3 min, 20 min and 40 min. As-fabricated coated claddings, plus specimens tested in autoclave at 415°C for 90 days in simulated PWR water chemistry were employed for comparison. Characterization techniques such as scanning electron microscopy, energy dispersive x-ray spectroscopy, electron backscattered diffraction, and transmission electron microscopy were used to determine the chemistry and crystalline structure of the various phases formed during the different exposures. When exposed to loss-of-coolant accident (LOCA) conditions for 40 min, a layer of Cr2O3 up to 8 µm thick was measured on the outer surface of the Cr-coating. No significant oxidation of the underlaying Optimized ZIRLO™ alloy occurred, and the applied coating appears to be very effective at delaying the cladding degradation under accident conditions. At the coating-substrate interface, a 1–2 µm thick layer of (Cr,Fe)2Zr Laves phase was found. The presence of this phase appears to have no detrimental effects on the coating performance, and it might play a role in slowing down the dissolution of the coating into the substrate. ZrO2 particles were frequently found at grain boundaries in the coating after exposure to LOCA conditions. For longer exposure time, these particles are expected to grow into a ZrO2-network, creating a fast diffusion path for O, and compromising the oxidation protection offered by the coating.
  •  
37.
  • Fritze, Stefan, et al. (författare)
  • Elemental distribution and fracture properties of magnetron sputtered carbon supersaturated tungsten films
  • 2024
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 477
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of strength and toughness is a major driving force for alloy design of protective coatings, and nanocrystalline tungsten (W)-alloys have shown to be promising candidates for combining strength and toughness. Here we investigate the elemental distribution and the fracture toughness of carbon (C) alloyed W thin films prepared by non-reactive magnetron sputtering. W:C films with up to ~4 at.% C crystallize in a body-centered-cubic structure with a strong 〈hh0〉texture, and no additional carbide phases are observed in the diffraction pattern. Atom probe tomography and X-ray photoelectron spectroscopy confirmed the formation of such a supersaturated solid solution. The pure W film has a hardness ~13 GPa and the W:C films exhibit a peak hardness of ~24 GPa. In-situ micromechanical cantilever bending tests show that the fracture toughness decreases from ~4.5 MPa·m1/2 for the W film to ~3.1 MPa·m1/2 for W:C films. The results show that C can significantly enhance the hardness of W thin films while retaining a high fracture toughness.
  •  
38.
  • Ge, Y., et al. (författare)
  • Effect of thermal aging on microstructure and carbides of SA508/Alloy 52 dissimilar metal weld
  • 2023
  • Ingår i: Materials Characterization. - 1044-5803. ; 200
  • Tidskriftsartikel (refereegranskat)abstract
    • A narrow-gap SA508/Alloy 52 dissimilar metal weld (DMW) mock-up, fully representative of an actual nuclear component, was investigated in this work. The microstructure and carbides formed in the low alloy steel fusion boundary (FB) and heat affected zone (HAZ) can act as brittle fracture initiators and could influence the brittle fracture behavior. However, the amount of information available in the open literature on the microstructural changes and carbide formation in DMW occurring upon post-weld heat treatment and long-term thermal aging is very limited. The microstructure and carbide type, morphology and size in the carbide precipitation zone (CPZ, up to 1.5 μm from FB), carbon depletion zone (CDZ, up to 40–50 μm from FB) and HAZ (up to 2 mm from FB) of the plant-relevant DMW in post-weld heat-treated and thermally-aged (400 °C for 15,000 h, corresponding to 90 years of operation) conditions were analyzed with analytical electron microscopy, wide-angle X-ray scattering and atom probe tomography. Long-term thermal aging increases the microhardness peak close to the FB, triples the width of the CPZ and coarsens the carbide size in the HAZ (up to a magnitude). There is no evidence of a significant phosphorus segregation to grain boundaries due to thermal aging.
  •  
39.
  • Grini, S., et al. (författare)
  • Dynamic Impurity Redistributions in Kesterite Absorbers
  • 2020
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley. - 0370-1972 .- 1521-3951.
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2ZnSn(S,Se)4 is a promising nontoxic earth-abundant solar cell absorber. To optimize the thin films for solar cell device performance, postdeposition treatments at temperatures below the crystallization temperature are normally performed, which alter the surface and bulk properties. The polycrystalline thin films contain relatively high concentrations of impurities, such as sodium, oxygen and hydrogen. During the treatments, these impurities migrate and likely agglomerate at lattice defects or interfaces. Herein, impurity redistribution after air annealing for temperatures up to 200 °C and short heavy water treatments are studied. In addition, nonuniformities of the sodium distribution on a nanometer and micrometer scale are characterized by atom probe tomography and secondary ion mass spectrometry, respectively. Sodium and oxygen correlate to a greater extent after heat treatments, supporting strong binding between the two impurities. Redistributions of these impurities occur even at room temperature over longer time periods. Heavy water treatments confirm out-diffusion of sodium with more incorporation of oxygen and hydrogen. It is observed that the increased hydrogen content does not originate from the heavy water. The existence of an “ice-like” layer on top of the Cu2ZnSnS4 layer is proposed. 
  •  
40.
  • Hedström, Peter, et al. (författare)
  • The 475 degrees C embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography
  • 2013
  • Ingår i: Materials Science & Engineering. - : Elsevier BV. - 0921-5093 .- 1873-4936. ; 574, s. 123-129
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work the 475 degrees C embrittlement in binary Fe-Cr and ternary Fe-Cr-X (X=Ni, Cu and Mn) alloys have been investigated. The mechanical properties were evaluated using microhardness and impact testing, and the structural evolution was evaluated using atom probe tomography (APT). The APT results after aging at 500 degrees C for 10 h clearly showed that both Ni and Mn accelerate the ferrite decomposition. No evident phase separation of either the Fe-20Cr or Fe-20Cr-1.5Cu samples was detected after 10 h of aging and thus no conclusions on the effect of Cu can be drawn. Cu clustering was however found in the Fe-20Cr-1.5Cu sample after 10 h aging at 500 degrees C. The mechanical property evolution was consistent with the structural evolution found from APT. Samples aged at 450 and 500 degrees C all showed increasing hardness and decreasing impact energy. The embrittlement was observed to take place mainly during the first 10 h of aging and it could primarily be attributed to phase separation, but also substitutional solute clustering and possibly carbon and nitrogen segregation may contribute in a negative way.
  •  
41.
  • Hosseini, Seyed, 1981, et al. (författare)
  • Atomic-scale investigation of carbon atom migration in surface induced white layers in high-carbon medium chromium (AISI 52100) bearing steel
  • 2017
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 130, s. 155-163
  • Tidskriftsartikel (refereegranskat)abstract
    • The microstructure and chemical composition of white layers (WLs) formed during hard turning of AISI 52100 steel were studied using atom probe tomography (APT) and transmission electron microscopy (TEM). APT analyses revealed a major difference in the re-distribution of the carbon (C) atoms between WLs formed above and below the Ac1 temperature, i.e. T-WL and M-WL, respectively. In T-WL, the C-atoms segregate to grain boundaries (GBs) forming interconnected or isolated C-rich clusters, ∼5 nm, with a concentration of 9.8 ± 0.3 at.%C. Apart from the GB segregation, in M-WLs, large C-rich regions were found with 24.8 ± 0.4 at.%C. Owing to the chemical composition (stoichiometry) and element partitioning of such regions, they were assigned as θ-carbides (cementite). The APT results reveal that the original θ-carbides remain un-dissolved in the M-WLs, but might be plastically deformed due to the excessive strain that exists in hard machining process. The obtained results are in good agreement with the temperatures that are reached during formation of M-WLs. The isolated nano-sized C-clusters were assigned as off-stoichiometric carbides whereas the interconnected C-rich clusters were attributed to Cottrell atmospheres, evident by the linear shape of the C-enrichment as observed in the APT reconstructions. The C-contents in the nano-sized martensitic and ferritic grains were estimated to 0.50 ± 0.06 at.%C and ∼0.46 ± 0.02 at.%C, respectively. The C-content in the ferritic grains, beyond the C-solubility limit in ferrite (
  •  
42.
  • Hosseini, Vahid A., et al. (författare)
  • Physical simulation of low temperature phase separation during multipass welding of super duplex stainless steel
  • 2024
  • Ingår i: Welding International. - 0950-7116 .- 1754-2138. ; 38:4, s. 290-297
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to investigate the degree of low-temperature phase separations and 475 °C -embrittlement in physically simulated multipass super duplex stainless steel (SDSS) welds. A single bead weld was produced using gas metal arc welding and multiple thermal cycles with different peak temperatures were applied using a Gleeble physical simulator with fixed and moving jaws to simulate the influence of constrained designs, to mimic the welding of thick SDSS components. The samples were studied using atom probe tomography and the results were correlated with toughness and ferrite microhardness. The results showed that the microhardness of the ferrite in the constrained simulated multipass reheated weld increased from 304 HV to 374 HV after 5 min aging at 475 °C. The amplitude of the Cr concentration of the same sample, showing the level of Fe-Cr phase separation, increased from 1.025 to 1.045 after 5 min aging at 475 °C. Despite the clear development of phase separation in the ferrite, the toughness did not drop. It can be concluded that reheated SDSS welds are not susceptible to 475 °C -embrittlement during short fabrication times of up to 5 min for the austenite level of 50%.
  •  
43.
  • Hosseini, Vahid, 1987-, et al. (författare)
  • Fe and Cr phase separation in super and hyper duplex stainless steel plates and welds after very short aging times
  • 2021
  • Ingår i: Materials & design. - : Elsevier Ltd. - 0264-1275 .- 1873-4197. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • Fe and Cr phase separation in ferrite, causing 475°C-embrittlement, was studied after very short aging times in super duplex stainless steel (SDSS) and hyper duplex stainless steel (HDSS) plates and welds. Atom probe tomography showed that hot-rolled SDSS, experiencing significant metal working, had faster kinetics of phase separations compared to the SDSS and HDSS welds after 5 min aging at 475 °C. The surface of the 33-mm SDSS plate had faster Fe and Cr phase separation and larger toughness drop. A higher density of dislocations next to the austenite phase boundary in ferrite, detected by electron channeling contrast, can promote the phase separation at the surface of the plate with lower austenite spacing. The toughness dropped in HDSS welds after aging, but SDSS welds maintained their toughness. An inverse simulation method considering an initial sinusoidal nanometric Cr and Fe fluctuation showed that Ni increases the interdiffusion of Cr in the system, resulting a higher degree of phase separation in SDSS welds than the HDSS weld. Within the composition range of the studied SDSS and HDSS materials, the processing influences the Fe and Cr phase separation more than the variation in composition during short aging or typical fabrication times. 
  •  
44.
  • Hosseini, Vahid, 1987-, et al. (författare)
  • Influence of Fabrication Route and Copper Content on Nature and Kinetics of 475 °C- Embrittlement in Cu-Containing Super Duplex Stainless Steels
  • 2023
  • Ingår i: Steel Research International. - 1611-3683 .- 1869-344X. ; 4, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of hot-rolling, hot isostatic pressing (HIP), welding, as well as copper content on 475 °C-embrittlement is studied in super duplex stainless steels. The as-received samples are solution annealed and quenched. Then, to study the kinetics and nature of phase transformations during fabrication, the samples are aged for a very short duration of 5 min at 475 °C. Atom probe tomography results reveal that the processes involving more plastic deformation such as hot rolling and HIP accelerate chromium and iron phase separation and cause precipitation of copper-rich particles (CRPs) in ferrite, resulting in significant toughness loss. In contrast, the weld does not show a high level of chromium and iron phase separation or CRPs precipitation, preserving its toughness after the short aging. The experiment and the inverse interdiffusion calculations reveal that raising the copper content slow down chromium and iron phase separation but significantly increase the CRP number density and decrease the toughness of the HIPed material. Precipitation simulation of CPRs show that the model must be modified based on each processing condition. It is concluded that hot rolling and HIP accelerate 475 °C-embrittlement, which cannot be prevented by raising the copper content.
  •  
45.
  • Hosseini, Vahid, 1987-, et al. (författare)
  • Nanoscale phase separations in as-fabricated thick super duplex stainless steels
  • 2021
  • Ingår i: Journal of Materials Science. - : SPRINGER. - 0022-2461 .- 1573-4803. ; 56:21, s. 12475-12485
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale phase separations, and effects of these, were studied for thick super duplex stainless steel products by atom probe tomography and mechanical testing. Although nanoscale phase separations typically occur during long-time service at intermediate temperatures (300-500 degrees C, our results show that slowly cooled products start to develop Fe and Cr separation and/or precipitation of Cu-rich particles already during fabrication. Copper significantly slowed down the kinetics at the expense of Cu-rich particle precipitation, where the high-copper material subjected to hot isostatic pressing (HIP), with Delta t(500-400) of 160 s and the low-copper hot-rolled plate with Delta t(500-400) of 2 s had the same level of Fe and Cr separation. The phase separations resulted in lower toughness and higher hardness of the HIP material than for hot-rolled plate. Therefore, both local cooling rate dependent and alloy composition governed variations of phase separations can be expected in as-fabricated condition.
  •  
46.
  • Hosseini, Vahid, 1987-, et al. (författare)
  • Precipitation kinetics of Cu-rich particles in super duplex stainless steels
  • 2021
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier BV. - 2238-7854. ; 15, s. 3951-3964
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex precipitation behavior of Cu-rich particles (CRPs) was investigated and simulated in continuously cooled and quench-aged super duplex stainless steel. Atom probe tomography (APT) and scanning electron microscopy showed that slow cooling resulted in nonuniform multimodal CRP precipitation and spinodal decomposition, while in the fast cooled and quench-aged conditions, more uniform precipitation of CRPs with no visible spinodal decomposition was found. Depletion of Cu, Ni, and Mn was observed in the ferrite next to the CRPs during growth, but not during dissolution. Some evidence of Ostwald ripening was seen after slow cooling, but in the quench-aged condition, particle coalescence was observed. Large CRPs disappeared next to a ferrite–austenite phase boundary after slow cooling when Cu was depleted due to the diffusion to austenite as also predicted by moving boundary Dictra simulation. Comparing Cu depleted areas next to CRPs analyzed by APT and moving boundary Dictra simulation of CRP–ferrite showed that the effective Cu diffusion coefficient during the early-stage precipitation was about 300 times higher than the Cu diffusion coefficient in ferrite at 475 °C. Using the effective diffusion coefficient and a size-dependent interfacial energy equation, CRP size distribution was successfully predicted by the Langer–Schwartz model implemented in Thermo-Calc Prisma. Applying a short aging time and continuous cooling increased the hardness and decreased the toughness values compared to the solution annealed condition. A nonuniform distribution of Cu in ferrite, the duplex structure, and partitioning of alloying elements among different phases are factors making CRP precipitation in duplex stainless steels complex.
  •  
47.
  • Hosseini, Vahid, 1987-, et al. (författare)
  • Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
  • 2018
  • Ingår i: Metallurgical and Materials Transactions. A. - : Springer Science and Business Media LLC. - 1073-5623 .- 1543-1940. ; 49A:7, s. 2803-2816
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
  •  
48.
  • Hutchinson, B., et al. (författare)
  • Microstructures and hardness of as-quenched martensites (0.1-0.5%C)
  • 2011
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 59:14, s. 5845-5858
  • Tidskriftsartikel (refereegranskat)abstract
    • Four commercial steels with carbon contents in the range 0.1-0.5 wt.% have been examined in the as-quenched condition using electron microscopy, X-ray diffraction and atom probe tomography. The austenite had been deformed 0%, 10% and 30% prior to brine quenching. No influence of this deformation was evident on the martensite hardness or in any of the microstructure measurements. Increasing carbon content showed a well-known marked effect on the hardness but resulted in little refinement in the grain structure of the martensite. All crystal structures were cubic; no evidence of tetragonality was seen even at the highest carbon level but some systematic changes in grain boundary misorientations existed. The content of carbon in true interstitial solid solution deduced from X-ray line shifts was small (similar to 0.02 wt.%), and was independent of the total carbon content in the steel. Atom probe tomography showed that carbon was almost completely segregated to lath boundaries and dislocations but with an increasing density of segregates in the higher carbon steels. Calculations of diffusion distances confirmed that the segregation patterns were compatible with autotempering of the martensite during quenching. Analysis of different possible contributions to strength leads to the conclusion that segregated carbon atoms at defects behave similarly to carbon in true solid solution and that this is the largest single factor controlling the strength of as-quenched martensite. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
49.
  • Hörnqvist Colliander, Magnus, 1979, et al. (författare)
  • Complete precipitate dissolution during adiabatic shear localisation in a Ni-based superalloy
  • 2020
  • Ingår i: Philosophical Magazine Letters. - : Informa UK Limited. - 0950-0839 .- 1362-3036. ; 100:12, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas microstructure evolution in adiabatic shear bands have been thoroughly studied, reports on the stability of hardening precipitates during shear localisation are scarce. We report an atomic scale investigation of solute distribution in adiabatic shear bands in a precipitation strengthened Ni-Fe-based superalloy, showing that the hardening particles are completely dissolved. Temperature estimations indicate that peak temperatures in the shear band above the solvus limits of the precipitates are not unrealistic, and thus diffusion-assisted transformations during the severe plastic deformation cannot be ruled out.
  •  
50.
  • Hörnqvist Colliander, Magnus, 1979, et al. (författare)
  • Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 106:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe-35Cr were performed at 773 and 798K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a' = 0.10-0.11 and a '' = 0.67-0.86). Furthermore, the method allows tracking of the high-Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a' = 0.12-0.20 depending on the assumed mobility).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 142
Typ av publikation
tidskriftsartikel (115)
konferensbidrag (16)
annan publikation (7)
rapport (2)
doktorsavhandling (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (128)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Thuvander, Mattias, ... (128)
Andrén, Hans-Olof, 1 ... (26)
Stiller, Krystyna Ma ... (22)
Sundell, Gustav, 198 ... (19)
Lindgren, Kristina, ... (18)
Odqvist, Joakim (16)
visa fler...
Hedström, Peter (14)
Thuvander, Mattias (14)
Zhou, Jing (11)
Efsing, Pål, 1965- (10)
Hörnqvist Colliander ... (7)
Tejland, Pia, 1978 (7)
Fazi, Andrea, 1992 (7)
Stiller, Marta Kryst ... (6)
Boåsen, Magnus (6)
Hallstadius, Lars (6)
Hultman, Lars (5)
Aboulfadl, Hisham, 1 ... (5)
Andersson, Martin, 1 ... (5)
Sattari, Mohammad, 1 ... (5)
Ågren, John (5)
Hosseini, Vahid, 198 ... (5)
Liu, Fang, 1975 (5)
Weidow, Jonathan, 19 ... (5)
Karlsson, Leif, 1956 ... (5)
Boll, Torben, 1979 (5)
Xiong, Wei (5)
Eriksson, Johan, 198 ... (5)
Olsson, Pär (4)
Odén, Magnus (4)
Steuwer, Axel (4)
Cengiz, Sezgin, 1984 (4)
Tuzi, Silvia, 1987 (4)
Magnusson, Hans (4)
Johnson, Lars (4)
González, Daniel (4)
Oliver, James (4)
Dahlbäck, Mats (4)
Xu, Xin (3)
Szakalos, Peter (3)
Krakhmalev, Pavel, 1 ... (3)
Offerman, S. E. (3)
ANDERSSON, MARCUS, 1 ... (3)
Bjurman, Martin (3)
Ruban, Andrei (3)
Hedström, Peter, 195 ... (3)
Mayweg, David, 1986 (3)
Folkeson, Nicklas, 1 ... (3)
Göransson, Kenneth (3)
Hertzman, Staffan (3)
visa färre...
Lärosäte
Chalmers tekniska högskola (129)
Kungliga Tekniska Högskolan (39)
Linköpings universitet (10)
Uppsala universitet (8)
Högskolan Väst (6)
RISE (6)
visa fler...
Göteborgs universitet (4)
Lunds universitet (3)
Karlstads universitet (3)
visa färre...
Språk
Engelska (142)
Forskningsämne (UKÄ/SCB)
Teknik (116)
Naturvetenskap (78)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy