SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tibell Lena A. E.) "

Sökning: WFRF:(Tibell Lena A. E.)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bivall Persson, Petter, 1979-, et al. (författare)
  • Improved Feature Detection over Large Force Ranges Using History Dependent Transfer Functions
  • 2009
  • Ingår i: Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, WorldHaptics 2009. - : IEEE. - 9781424438587 ; , s. 476-481
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present a history dependent transfer function (HDTF) as a possible approach to enable improved haptic feature detection in high dynamic range (HDR) volume data. The HDTF is a multi-dimensional transfer function that uses the recent force history as a selection criterion to switch between transfer functions, thereby adapting to the explored force range. The HDTF has been evaluated using artificial test data and in a realistic application example, with the HDTF applied to haptic protein-ligand docking. Biochemistry experts performed docking tests, and expressed that the HDTF delivers the expected feedback across a large force magnitude range, conveying both weak attractive and strong repulsive protein-ligand interaction forces. Feature detection tests have been performed with positive results, indicating that the HDTF improves the ability of feature detection in HDR volume data as compared to a static transfer function covering the same range.
  •  
2.
  • Bohlin, Gustav, 1981-, et al. (författare)
  • Evolving germs – Introducing novice pupils to the evolution of bacterial resistance to antibiotics
  • 2017
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • There is a dual relationship between antibiotic resistance and biological evolution. Antibiotic resistance is typically used as a motivation for why we need an efficient evolution education given that evolutionary reasoning improves our understanding of causes and suggested countermeasures. On the other hand, antibiotic resistance has also been suggested as a useful context in which evolution can be taught, based primarily but not solely on the quick generation times of bacteria. In the present study, we explore the potential benefits with using antibiotic resistance as an example when introducing evolution to novice pupils (aged 13-14). We created a series of animations that pupils interacted with in groups of 3-5 (total n=32). Data was collected on both individual (pre-posttest) and group (collaborative group questions) level. In addition, the exercise was video-taped and the full transcripts were analyzed inductively. The results show that a majority of the pupils succeeded in applying basic evolutionary reasoning to make predictions on antibiotic resistance during and after the exercise, suggesting that this may be a successful approach. Cautions to be aware of include pupils’ use of teleological and antropomorphic reasoning, especially in discussions on submicroscopical phenomena such as genetic processes. Implications for teaching include both lessons from the design of animations as well as the identification of common misunderstandings. The analysis also identifies and points toward several possible future research endeavours.
  •  
3.
  • Höst, Gunnar E., 1976-, et al. (författare)
  • Methods for investigating students’ learning and interaction with a haptic virtual biomolecular model
  • 2010
  • Ingår i: Contemporary Science Education Research: International Perspectives. - Ankara : Pegem Akademi. - 9786053640318 ; , s. 115-121
  • Konferensbidrag (refereegranskat)abstract
    • Although immersive haptic virtual technologies are emerging rapidly in modern education, few methods exist for delivering data on the pedagogical merits of such models in the molecular life sciences. This paper reports on a selection of methods that we have used to obtain and analyse data on students’ learning and interaction with a haptic virtual model of protein-ligand docking, previously designed by author PBP. The methods have been developed and employed during four consecutive years in which the model has been part of an advanced biomolecular interactions course. In this regard, we present data-collection methods that include written items, interviews, think-aloud tasks and automated time-stamped logs and, corresponding quantitative and qualitative analytical procedures such as pre/posttest statistical comparisons, word usage analysis and, visualised profiling of students’ interaction with the model. Our results suggest that these methods are useful for generating valuable information on students’ learning gain, changes in conceptual understanding, reasoning processes and patterns of interactivity with the model. Dissemination of such methods could provide an empirical contribution to the dearth of research instruments in this domain. Future research will develop these methodologies to explore the relationship between using the model and students’ conceptual and embodied learning.
  •  
4.
  • Höst, Gunnar E., 1976-, et al. (författare)
  • Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
  • 2013
  • Ingår i: CBE - Life Sciences Education. - Bethesda, USA : American Society for Cell Biology. - 1931-7913. ; 12:3, s. 471-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition.
  •  
5.
  • Tibell, Lena A. E., 1952-, et al. (författare)
  • Educational Challenges of Molecular Life Science- Characteristics and implications for education and research
  • 2010
  • Ingår i: CBE - Life Sciences Education. - Bethesda, MD, United States : American Society for Cell Biology. - 1931-7913. ; 9:1, s. 25-33
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life, often with deep ethical dimensions. At the same time the content is inherently complex, highly abstract and deeply rooted in diverse disciplines ranging from “pure sciences,” such as maths, chemistry, and physics, through “applied sciences”, such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together these features pose diverse, important, and exciting challenges for tomorrow’s teachers and educational establishments.With backgrounds in molecular life science research and secondary life science teaching, we (LT and CJR, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges we focus in most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.
  •  
6.
  •  
7.
  •  
8.
  • Andersson, Johanna, et al. (författare)
  • Children's reasoning and representations about living and non-living things
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • Understanding of the concept ‘life’ and what characterise ‘living things’ is important as a foundation for learning in biology. In a more general view, this understanding can make children develop awareness, respect and responsibility for life as members of a society and in decision making for sustainable development. The present pilot study aim to investigate 5-6 year old pre-school children’s reasoning and representations about living and nonliving things. In cognitive developmental research, the concept of life is well investigated but, questions still remain regarding how children reason around and represent these concepts. Previous research has found that children have difficulties in including plants as living things. Moreover, it is found that young children include e.g. the sun, clouds and rocks as living things. The methods that have been used are often quantitative and use picture-cards with different objects for the children to categorize. In the present pilot study a modified methodology was applied. Children’s drawings of what they consider as living and non-living were collected and picture-cards were used as point of departure for reasoning. In interviews the children were encouraged to explain and express their ideas. The drawings and the cards mainly worked as a meaning making tool for the children. Results from the study will be presented and discussed. 
  •  
9.
  • Bivall, Petter, 1979-, et al. (författare)
  • Do Haptic Representations Help Complex Molecular Learning?
  • 2011
  • Ingår i: Science Education. - : Wiley. - 0036-8326 .- 1098-237X. ; 95:4, s. 700-719
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest design. In both modes, users could move and rotate virtual 3D representations of the chemical structures of the two molecules, a protein and a small ligand molecule. In addition, in a haptic mode users could feel the interactions (repulsive and attractive) between molecules as forces with a haptic device. Twenty postgraduate students (10 in each condition) took pretests about the process of protein--ligand recognition before exploring the model in ways suggested by structured worksheets and then completing a posttest. Analysis addressed quantitative learning outcomes and more qualitatively students' reasoning during the learning phase. Results showed that the haptic system helped students learn more about the process of protein–ligand recognition and changed the way they reasoned about molecules to include more force-based explanations. It may also have protected students from drawing erroneous conclusions about the process of protein–ligand recognition observed when students interacted with only the visual model.
  •  
10.
  • Bivall, Petter, 1979- (författare)
  • Touching the Essence of Life : Haptic Virtual Proteins for Learning
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation presents research in the development and use of a multi-modal visual and haptic virtual model in higher education. The model, named Chemical Force Feedback (CFF), represents molecular recognition through the example of protein-ligand docking, and enables students to simultaneously see and feel representations of the protein and ligand molecules and their force interactions. The research efforts have been divided between educational research aspects and development of haptic feedback techniques.The CFF model was evaluated in situ through multiple data-collections in a university course on molecular interactions. To isolate possible influences of haptics on learning, half of the students ran CFF with haptics, and the others used the equipment with force feedback disabled. Pre- and post-tests showed a significant learning gain for all students. A particular influence of haptics was found on students reasoning, discovered through an open-ended written probe where students' responses contained elaborate descriptions of the molecular recognition process.Students' interactions with the system were analyzed using customized information visualization tools. Analysis revealed differences between the groups, for example, in their use of visual representations on offer, and in how they moved the ligand molecule. Differences in representational and interactive behaviours showed relationships with aspects of the learning outcomes.The CFF model was improved in an iterative evaluation and development process. A focus was placed on force model design, where one significant challenge was in conveying information from data with large force differences, ranging from very weak interactions to extreme forces generated when atoms collide. Therefore, a History Dependent Transfer Function (HDTF) was designed which adapts the translation of forces derived from the data to output forces according to the properties of the recently derived forces. Evaluation revealed that the HDTF improves the ability to haptically detect features in volumetric data with large force ranges.To further enable force models with high fidelity, an investigation was conducted to determine the perceptual Just Noticeable Difference (JND) in force for detection of interfaces between features in volumetric data. Results showed that JNDs vary depending on the magnitude of the forces in the volume and depending on where in the workspace the data is presented.
  •  
11.
  •  
12.
  • Bohlin, Gustav, 1981-, et al. (författare)
  • Diverse use of threshold concepts - A content analysis of online dynamic visualizations describing evolution.
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • There is an abundance of dynamic visualizations (animations, videos and simulations) that claim to explain evolution available on the Internet. The present study explores what aspects of evolution that are represented in these potential learning tools. A criteria catalogue covering 40 operationalized variables was used as a content analysis grid in the analysis of 71 dynamic visualizations. The concepts, derived from research literature, were operationalized into variables sorted into four different categories: (a) content-specific concepts (such as limited resources or inherited variation), (b) threshold concepts (core concepts that transform and integrate understanding within a subject), (c) alternative conceptions (such as teleological explanations or anthropomorphism), and (d) model organism. The results indicate that some concepts are dominantly communicated while others are seldom or never included in online visualizations. Regarding the proposed threshold concepts, evolutionary events happening on small time- and spatial scales, such as subcellular processes, were seldom observed. Rather, the focus was on events happening at a population level in time scales spanning from years and longer. This echoes with an observed lack of explanations regarding randomly occurring mutations providing the basis for variation. Implications include that there are components of evolution that would benefit from being addressed with an increased focus in biology teaching and science education research. The results may also serve as a useful toolkit in the design of new educational material.
  •  
13.
  • Bohlin, Gustav, 1981-, et al. (författare)
  • Evolution on the set – A conceptual characterization of online dynamic visualizations.
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Despite its recognized importance, the theory of evolution presents severe problems to learners. A common approach in science education research involves the division of evolution in conceptual constructs, lately also including the role of threshold concepts. These are seminal ideas that open up new ways of thinking about and interpreting previously known processes. For understanding of evolution, threshold concepts consist of, for example, randomness, probability and wide-stretched spatio-temporal scales. An abundance of dynamic visualizations (animations, videos and simulations), attempting to explain evolution, are available on the Internet. The aim with our study was to map what aspects of evolution that are represented in these visualizations. A criteria catalogue covering 42 operationalized variables was used as a content analysis grid in the analysis of a sample selection including 71 dynamic visualizations. The variables include evolution content concepts (such as limited resources and differential survival) and proposed threshold concepts (such as explicit mentioning of factors influenced by randomness or level of organization in space and time, including connections between submicro- and macro aspects). Furthermore, it includes common alternative conceptions (such as anthropomorphism or that evolution is driven by need). Two raters conducted the analysis with an overlapping reliability sample covering 23 visualizations. Intercoder reliability was calculated using Krippendorff’s alpha. The results indicate that some concepts are dominantly communicated while others are seldom or never included in online visualizations. Regarding the proposed threshold concepts, evolutionary events happening on small time- and spatial scales, such as subcellular processes, were seldom observed. Rather, the focus was on events happening at a population level in time scales spanning from years and longer. Implications include that there are components of evolution that would benefit from being addressed more explicit. The results may also serve as a useful toolkit in the design of new educational material.
  •  
14.
  • Bohlin, Gustav, 1981- (författare)
  • Evolving germs – Antibiotic resistance and natural selection in education and public communication
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Bacterial resistance to antibiotics threatens modern healthcare on a global scale. Several actors in society, including the general public, must become more involved if this development is to be countered. The conveyance of relevant information provided through education and media reports is therefore of high concern. Antibiotic resistance evolves through the mechanisms of natural selection; in this way, a sound understanding of these mechanisms underlies explanations of causes and the development of effective risk-reduction measures. In addition to natural selection functioning as an explanatory framework to antibiotic resistance, bacterial resistance as a context seems to possess a number of qualities that make it suitable for teaching natural selection – a subject that has been proven notoriously hard to teach and learn. A recently suggested approach for learning natural selection involves so-called threshold concepts, which encompass abstract and integrative ideas. The threshold concepts associated with natural selection include, among others, the notions of randomness as well as vast spatial and temporal scales. Illustrating complex relationships between concepts on different levels of organization is one, of several, areas where visualizations are efficient. Given the often-imperceptible nature of threshold concepts as well as the fact that natural selection processes occur on different organizational levels, visual accounts of natural selection have many potential benefits for learning.Against this background, the present dissertation explores information conveyed to the public regarding antibiotic resistance and natural selection, as well as investigates how these topics are presented together, by scrutinizing media including news reports, websites, educational textbooks and online videos. The principal method employed in the media studies was content analysis, which was complemented with various other analytical procedures. Moreover, a classroom study was performed, in which novice pupils worked with a series of animations explaining the evolution of antibiotic resistance. Data from individual written assignments, group questions and video-recorded discussions were collected and analyzed to empirically explore the potential of antibiotic resistance as a context for learning about evolution through natural selection.Among the findings are that certain information, that is crucial for the public to know, about antibiotic resistance was conveyed to a low extent through wide-reaching news reporting. Moreover, explanations based on natural selection were rarely included in accounts of antibiotic resistance in any of the examined media. Thus, it is highly likely that a large proportion of the population is never exposed to explanations for resistance development during education or through newspapers. Furthermore, the few examples that were encountered in newspapers or textbooks were hardly ever visualized, but presented only in textual form. With regard to videos purporting to explain natural selection, it was found that a majority lacked accounts of central key concepts. Additionally, explanations of how variation originates on the DNA-level were especially scarce. These and other findings coming from the content analyses are discussed through the lens of scientific literacy and could be used to inform and strengthen teaching and scientific curricula with regards to both antibiotic resistance and evolution. Furthermore, several factors of interest for using antibiotic resistance in the teaching of evolution were identified from the classroom study. These involve, among others, how learners’ perception of threshold concepts such as randomness and levels of organization in space and time are affected by the bacterial context 
  •  
15.
  • Bohlin, Gustav, 1981-, et al. (författare)
  • NTA-Digital – Tema Kroppen
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tema Kroppen är ett nytt digitalt tema inom NTA (Naturvetenskap och Teknik för Alla) som erbjuds årskurs 4-7 i alla anslutna skolor och kommuner. Det sjösätts tillsammans med ett nyproducerat tema om rymden under 2016 efter ett utvecklingsarbete som pågått sedan 2013. Sedan temat öppnade i slutet av våren har drygt 8 000 konton skapats. Projektledningen gav ”Visuellt lärande och kommunikation” (vid LiU och Norrköpings Visualiseringscenter) i uppdrag att, under ledning av Lena Tibell och Marie Rådbo, utforma en web-plattform samt innehåll och struktur för de två temana. Projektet har möjliggjorts genom ekonomiskt stöd från Marcus och Amalia Wallenbergs minnesfond.I tema Kroppen arbetar eleverna sig framåt i en historia genom att lösa uppgifter kopplade till ett antal av kroppens fysiologiska system (cirkulations-systemet, andning, matspjälkning, hormoner och nervsystemet). Till sin hjälp har de en interaktiv tredimensionell modell av människokroppen med integrerat faktamaterial och ett flertal simulatorer. För att lösa uppdragen krävs en kombination av arbete inne i portalen och fysiska laborationer som de utför i klassrummet. Utöver detta finns en inbyggd digital infrastruktur inom vilken eleverna lämnar in svar på uppgifter och kan kommunicera med sin lärare.Utvecklingsarbetet har utgått från tanken att kroppens system inte är isolerade från varandra utan står i ständig samverkan och påverkan. Ett flertal didaktiska hänsyn och frågeställningar har präglat arbetet; däribland lärande med modeller och representationer, att röra sig mellan olika skalnivåer, begreppssvårigheter och skildring av dynamiska förlopp.Vi kommer både visa upp exempel på hur temat och modellerna fungerar samt diskutera lärdomar och svårigheter som uppstått i utvecklingsarbetet. 
  •  
16.
  • Critical Features in Visualization of Protein Function. : An Empirical Study of Student´s Meaning-Making of Diagrams and an Animation.
  • 2008
  • Proceedings (redaktörskap) (populärvet., debatt m.m.)abstract
    • Ever since Watson’s & Crick’s first image of the double helix of DNA was published in 1953, the use of visualizations in molecular life science has continued to grow in importance. Several studies of students’ interpretation of images and other forms of visualizations have been conducted in science education research, especially physics. These studies have shown that ambiguities, simplifications and potentially misleading elements in the design of visualizations can give rise to unexpected difficulties or alternative interpretations.In this study we are using variation theory as a framework for our analysis. According to variation theory, which can be characterized as a theoretical development and framework with roots in phenomenographic research, variation in how a phenomenon is experienced by a learner is decisive for the learning outcome. According to variation theory, there are some critical features that corresponds to the aspects of a phenomenon that makes the student grasp the content. The key objetive of this investigation is to study which critical features of biomolecular processes involving proteins can be discerned using still images as compared to an animation.In the study, a set of 107 students taking different variants of the natural science program in the second (grade 11) or third (grade 12) year of their upper secondary education answered a questionnaire with open-ended questions, focusing of the structure, function and occurrence of proteins. From those students, 20 were interviewed in semi-structured, revised clinical interviews. The interviews focused on the structure and function of proteins and were structured around three 2D visualizations of proteins redesigned from examples in text books used in their biology and chemistry courses, and an animation. The analysis of the interview transcripts yielded three categories of critical features relating to learning biomolecular processes, which caused a major part of the difficulties students experienced when interpreting the visualizations: 1) Features that shows the complexity of biomolecular interactions arising from the multitude of different molecules that are simultaneously interacting with each other. 2) Features that shows the dynamic and random character of movement of the particles, including the unimaginable speed at which reactions occur. 3) Extrapolation from 2D to 3D and visualizing 3D-structures.
  •  
17.
  • Jahic Pettersson, Alma, 1986-, et al. (författare)
  • Students’ Meaning-Making of Nutrient Uptake in Relation to Organizational Levels
  • 2022
  • Ingår i: Designs for Learning. - : Stockholm University Press. - 2001-7480. ; 14:1, s. 29-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous research suggests that everyday expressions are commonly used in students’ descriptions of nutrient uptake. This study investigate a classroom context in year 5 with a focus on signs of scientific meaning-making about nutrient uptake with an animation as a resource in two different schools. In one of the schools there was also a teacher review. The aim of this study is to investigate the pedagogical affordances of scientific terms and everyday expressions in the animation and in classroom teaching. Further, students’ signs of scientific meaning-making at the meso and submicro organizational level in group discussions and written descriptions are analyzed and if taking part of a teacher review influenced the students’ use of scientific terms and everyday expressions.The results show that the students who had a teacher review use everyday expressions at the meso and submicro level to a greater extent than the students who did not have an teacher review. The everyday expressions are often used as a kind of translation from the scientific terms in the students’ drawings.
  •  
18.
  •  
19.
  • Larsson, Caroline, et al. (författare)
  • Challenging Students’ Intuitions : The Influence of a Tangible Model of Virus Assembly on Students’ Conceptual Reasoning About the Process of Self-Assembly
  • 2015
  • Ingår i: Research in science education. - : Springer Netherlands. - 0157-244X .- 1573-1898. ; 45:5, s. 663-690
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students’ everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp the process of self-assembly and in particular the facet “random molecular collision”. The present study investigates how and why the model and the group exercise facilitate students’ learning of this particular facet. The data analysed consist of audio recordings of six group exercises (n = 35 university students) and individual semi-structured interviews (n = 5 university students). The analysis is based on constructivist perspectives of learning, a combination of conceptual change theory and learning with external representations. Qualitative analysis indicates that perceived counterintuitive aspects of the process created a cognitive conflict within learners. The tangible model used in the group exercises facilitated a conceptual change in their understanding of the process. In particular, the tangible model appeared to provide cues and possible explanations and functioned as an “eye-opener” and a “thinking tool”. Lastly, the results show signs of emotions also being important elements for successful accommodation.
  •  
20.
  • Museth, Anna Katrine, et al. (författare)
  • Selective destabilization of the metal binding region caused by the FALS associated mutation G93A in CuZnSOD
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We have, by use of 1H-15N-HSQC NMR spectroscopy, analyzed hydrogen exchange at the amide groups of wtCuZnSOD and the FALS-associated G93A SOD-variant in their fully metallated states. From measurements at near physiological conditions we could analyze the exchange at 64% of all backbone amide groups, which have allowed a detailed characterization of the local dynamics at these positions in both the wt and G93A proteins. The results show that the G93A mutation had no effect on the dynamics at a majority of the investigated positions. However the mutation results in local destabilization at the site of mutation and to stabilization at positions that were apparently scattered over the entire protein surface. Most remarkably, the mutation selectively destabilized the remote metal binding region. The results indicate that the metal binding region may be involved in intermolecular protein-protein interactions, which may constitute the early stages in formation of aggregates.
  •  
21.
  •  
22.
  • Orraryd, Daniel, et al. (författare)
  • Creative evolution: Students generating stop-motion animations of evolutionary change
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • iagrams have been used to visualize evolutionary relationships for more than 150 years, and are today readily found in many areas such as textbooks, media, museums and the scientific literature. The tree of life metaphor, where the diagram takes the form of an organic vertical tree has been used almost as long and is still used to a high degree in textbooks and at museums. Despite this high prevalence the instructional needed to develop tree-thinking abilities are often lacking, potentially leading to interpretational misconceptions of the evolutionary concepts presented.In this study 5 exhibitions with evolutionary content in natural science museums in the Nordic countries have been analysed in order to understand how evolutionary tree diagrams are incorporated in these exhibitions, what design is used and what instructional support is available to the visitor. A multi-modal social semiotic approach was used, where 3 functional levels were analysed together in order to assess the meaning making potential of the evolutionary trees in these exhibitions; i) content, representational process and design. ii) instruction and interactivity. iii) spatial and organizational composition. The analyses show a wide range of communication strategies; reaching from the evolutionary tree diagrams having a pivotal role in the exhibition narrative to being placed purely in the margin with no explicit connection to the overall evolutionary content. The instructional support is in many cases lacking but is sometimes incorporated in the presentational text of specific parts of the evolutionary tree, and the design ranges from tree of life type iconic visualisations to highly abstract renderings. Overall the evolutionary tree as a visual tool to communicate important evolutionary concepts seems to be used to a high degree but important aspects in order to better afford scientific correct interpretations of the trees are sometimes lacking.
  •  
23.
  • Rundgren, Carl-Johan, 1973-, et al. (författare)
  • Death of Metaphors in Life Science? : A study of upper secondary and tertiary students' use of metaphors and help-words in their meaning-making of scientific content.
  • 2009
  • Ingår i: Asia-Pacific Forum on Science Learning and Teaching. - 1609-4913. ; 10:3, s. Article 3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The study reported in this article investigated the use of metaphors by upper secondary and tertiary students while learning a specific content area in molecular life science, protein function. Terms and expressions in science can be used in such precise and general senses that they are totally dissociated from their metaphoric origins. Beginners in a scientific field, however, lack the experience of using a term of metaphorical origin in its domain-specific precise and general sense, and may therefore be more cognitively affected than the expert by the underlying metaphor. The study shows that beginners in the field of molecular life science use spontaneous metaphors and metaphors used in teaching in a way that demonstrates that they have difficulty using the proper scientific terminology. The results of this study indicate, among other things, that difficulties in science education may, to a large degree, be connected with problems of communicating the generality and precision of scientific terms and metaphors used in science. The article ends with a suggestion as how to enable students to move from general and vague metaphoric uses of scientific terms toward a more general and precise usage.
  •  
24.
  • Rundgren, Carl-Johan, 1973-, et al. (författare)
  • Help-words – a Creative Way of Making Sense of visualizations in molecular life science
  • 2010
  • Konferensbidrag (refereegranskat)abstract
    • When confronted with the representations and terms of science, students make meaning using the knowledge and language they possess. They make frequent use of conventional expressions, but they also use words that seemingly have no conventional meaning, here labelled help-words. This study explores the verbal resources upper secondary students use to make meaning of molecular life science. The paper gives a description of the phenomenon of non-conventionalised expressions, help-words, based on a study of 20 upper secondary students. The results indicate that help-words are meaningful in learning situations, especially in abstract disciplines such as molecular life science.
  •  
25.
  • Rundgren, Carl-Johan, 1973- (författare)
  • Visual thinking, visual speech : a semiotic perspective on meaning-making in molecular life science : how visualizations, metaphors and help-words contribute to the formation of knowledge about proteins among upper secondary and tertiary level students
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Molecular life science has become one of the fastest-growing fields of scientific and technical innovation. An important issue for tomorrow’s education is to meet the challenge posed by various facets of molecular life science. Images, diagrams and other forms of visualization are playing increasingly important roles in molecular life science teaching and research, both for conveying information and as conceptual tools, transforming the way we think about the events and processes the subject covers.This thesis highlights different aspects of molecular life science education: the rapid production and flow of information, its multi- and interdisciplinary character, the complexity of life phenomena and our knowledge of them, and the high level of abstraction of the knowledge produced. This study also examines how upper secondary and tertiary students interpret visualizations of proteins. The participating upper secondary students were taking different variants of the natural science program in the second (grade 11) or third (grade 12) year. A set of 20 upper secondary students, and four third-year biochemistry students were interviewed in semistructured, revised clinical interviews. Furthermore, 31 university students participated in a group discussion and answered a questionnaire. The interviews, group discussions and questionnaires were structured around 2D illustrations of proteins and an animated representation of water molecules being transported through a channel in the cell membrane.Three critical features of the ability to visualize molecular processes were identified: the complexity of biomolecular processes, the dynamic and stochastic nature of biomolecular interaction, and extrapolation between 2D and 3D. The results also indicate that the students may possess an understanding of a process which they cannot express in words.Furthermore, the results indicate that beginner students use a kind of intermediate language when learning a new content area, frequently making use of metaphors, some that they have obtained from their teaching and some that they create themselves, i.e. spontaneous metaphors. They also make use of words that seemingly have no meaning, such as “plupp” and “flopp”. These words are here referred to as help-words. The results from this study indicate that spontaneous metaphors and helpwords do take on a meaning in learning situations and that they play a role in the meaning-making of the students. Moreover, the results indicate that difficulties in science education may to a large degree be connected to the problems of communicating the precise and general nature of scientific terms.
  •  
26.
  • Schönborn, Konrad J., et al. (författare)
  • Exploring relationships between students’ interaction and learning with a haptic virtual biomolecular model
  • 2011
  • Ingår i: Computers and education. - : Elsevier. - 0360-1315 .- 1873-782X. ; 57:3, s. 2095-2105
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores tertiary students’ interaction with a haptic virtual model representing the specific binding of two biomolecules, a core concept in molecular life science education. Twenty students assigned to a haptics (experimental) or no-haptics (control) condition performed a “docking” task where users sought the most favourable position between a ligand and protein molecule, while students’ interactions with the model were logged. Improvement in students’ understanding of biomolecular binding was previously measured by comparing written responses to a target conceptual question before and after interaction with the model. A log-profiling tool visualized students’ movement of the ligand molecule during the docking task. Multivariate parallel coordinate analyses explored any relationships in the entire student data set. The haptics group produced a tighter constellation of collected final docked ligand positions in comparison with no-haptics students, coupled to docking profiles that depicted a more fine-tuned ligand traversal. Students in the no-haptics condition employed double the amount of interactive behaviours concerned with switching between different visual chemical representations offered by the model. In the no-haptics group, this visually intense processing was synonymous with erroneously ‘fitting’ the ligand closer distances to the protein surface. Students who showed higher learning gains tended to engage fewer visual representational switches, and were from the haptics group, while students with a higher spatial ability also engaged fewer visual representational switches, irrespective of assigned condition. From an information-processing standpoint, visual and haptic coordination may offload the visual pathway by placing less strain on visual working memory. From an embodied cognition perspective, visual and tactile sensorimotor interactions in the macroworld may provide access to constructing knowledge about submicroscopic phenomena. The results have cognitive and practical implications for the use of multimodal virtual reality technologies in educational contexts.
  •  
27.
  • Schönborn, Konrad J., et al. (författare)
  • Using logging data to visualize and explore students’ interaction and learning with a haptic virtual model of protein-ligand docking
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This study explores students’ interaction and learning with a haptic virtual model of biomolecular recognition. Twenty students assigned to a haptics or no-haptics condition performed a protein-ligand docking task where interaction was captured in log files. Any improvement in understanding of recognition was measured by comparing written responses to a conceptual question before and after interaction. A log-profiling tool visualized students’ traversal of the ligand while multivariate parallel coordinate analyses uncovered trends in the data. Students who experienced force feedback (haptics) displayed docked positions that were more clustered in comparison with no-haptics students, coupled to docking profiles that depicted a more focused traversal of the ligand. Students in the no-haptics condition employed double the amount of behaviours concerned with switching between multiple visual representations offered by the system. In the no-haptics group, this visually intense processing was associated with ‘fitting’ the ligand closer distances to the surface of the protein. A negative relationship between high representational switching activity and learning gain as well as spatial aptitude was also revealed. From an information-processing perspective, visual and haptic coordination could permit engagement of each perceptual channel simultaneously, in effect offloading the visual pathway by placing less strain on visual working memory.
  •  
28.
  • Skar, Helena, et al. (författare)
  • The potential of the evolutionary tree as mediational means in museum exhibitions containing key evolutionary concepts
  • 2015
  • Ingår i: Non-formal Learning Environments.
  • Konferensbidrag (refereegranskat)abstract
    • Diagrams have been used to visualize evolutionary relationships for more than 150 years, and are today readily found in many areas such as textbooks, media, museums and the scientific literature. The tree of life metaphor, where the diagram takes the form of an organic vertical tree has been used almost as long and is still used to a high degree in textbooks and at museums. Despite this high prevalence the instructional needed to develop tree-thinking abilities are often lacking, potentially leading to interpretational misconceptions of the evolutionary concepts presented.In this study 5 exhibitions with evolutionary content in natural science museums in the Nordic countries have been analysed in order to understand how evolutionary tree diagrams are incorporated in these exhibitions, what design is used and what instructional support is available to the visitor. A multi-modal social semiotic approach was used, where 3 functional levels were analysed together in order to assess the meaning making potential of the evolutionary trees in these exhibitions; i) content, representational process and design. ii) instruction and interactivity. iii) spatial and organizational composition. The analyses show a wide range of communication strategies; reaching from the evolutionary tree diagrams having a pivotal role in the exhibition narrative to being placed purely in the margin with no explicit connection to the overall evolutionary content. The instructional support is in many cases lacking but is sometimes incorporated in the presentational text of specific parts of the evolutionary tree, and the design ranges from tree of life type iconic visualisations to highly abstract renderings. Overall the evolutionary tree as a visual tool to communicate important evolutionary concepts seems to be used to a high degree but important aspects in order to better afford scientific correct interpretations of the trees are sometimes lacking.
  •  
29.
  • Stadig Degerman, Mari, et al. (författare)
  • Critical features in an biochemistry animation : Designer's intention and students' interpretation
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Various authors have investigated students’ interpretations of biochemistry visualizations, but none to our knowledge have compared the intentions of the visualizations’ design with students’ interpretations. This study contrasts an animator’s educational intentions for an animation visualizing ATP (adenosine triphosphate) synthesis, catalysed by the enzyme Fo/F1-ATP-synthase, with 43 university students’ interpretation of the animation. The aim was to identify symbolic expressions in the animation and assess how well they succeed or fail to communicate the intended learning object. We explored the animators’ intentions in a semi-structured interview. To analyse how the students observed and interpreted the animation we first collected individual written responses in a combined worksheet and questionnaire from the students who were using the animation as a thinking tool. Immediately thereafter we also recorded the students’ argumentation and reasoning in group discussions based on the same questions.’ In total, six key facets intentionally illustrated by the animator were successfully interpreted by the students: 1) The dynamics and movement in the protein 2) The conformational changes induced, 3) The driving force of the process (the proton gradient), 4) The causal sequence (coupling) in the process, 5) The cellular context and nature (protein) of the main actor and 6) The energy transfer. Four of the symbolic expressions chosen by the animator helped the students to interpret these facets of the process. Students’ successfully discerned the conformational change in the protein, the rotation of the catalytic part of the protein and the connection between the proton gradient and ATPsynthesis due to the transitory movement depicted in the animation. In addition, use of a ribbonmodel helped students to intuitively grasp that a protein was involved and the sub-microscopic nature of the process. However, a flash intentionally used to indicate the energy transfer associated with the formation of the phosphodiester bond, was misinterpreted by the students as a release of energy, instead of an energy transformation from mechanical to temporarily stored energy in a chemical bond. Further, only five students were able to predict the reversibility of the process from the animation.
  •  
30.
  • Stadig Degerman, Mari, et al. (författare)
  • Critical features in an biochemistry animation : Designer's intention and students' interpretation
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Various authors have investigated students’ interpretations of biochemistry visualizations, but none to our knowledge have compared the intentions of the visualizations’ design with students’ interpretations. This study contrasts an animator’s educational intentions for an animation visualizing ATP (adenosine triphosphate) synthesis, catalysed by the enzyme Fo/F1-ATP-synthase, with 43 university students’ interpretation of the animation. The aim was to identify symbolic expressions in the animation and assess how well they succeed or fail to communicate the intended learning object. We explored the animators’ intentions in a semi-structured interview. To analyse how the students observed and interpreted the animation we first collected individual written responses in a combined worksheet and questionnaire from the students who were using the animation as a thinking tool. Immediately thereafter we also recorded the students’ argumentation and reasoning in group discussions based on the same questions.’ In total, six key facets intentionally illustrated by the animator were successfully interpreted by the students: 1) The dynamics and movement in the protein 2) The conformational changes induced, 3) The driving force of the process (the proton gradient), 4) The causal sequence (coupling) in the process, 5) The cellular context and nature (protein) of the main actor and 6) The energy transfer. Four of the symbolic expressions chosen by the animator helped the students to interpret these facets of the process. Students’ successfully discerned the conformational change in the protein, the rotation of the catalytic part of the protein and the connection between the proton gradient and ATPsynthesis due to the transitory movement depicted in the animation. In addition, use of a ribbonmodel helped students to intuitively grasp that a protein was involved and the sub-microscopic nature of the process. However, a flash intentionally used to indicate the energy transfer associated with the formation of the phosphodiester bond, was misinterpreted by the students as a release of energy, instead of an energy transformation from mechanical to temporarily stored energy in a chemical bond. Further, only five students were able to predict the reversibility of the process from the animation.
  •  
31.
  • Stadig Degerman, Mari, et al. (författare)
  • Learning Goals and Conceptual Difficulties in Cell Metabolism : An explorative study of university lectures' views
  • 2012
  • Ingår i: Chemistry Education Research and Practice. - : Royal Society of Chemistry (RSC). - 1756-1108. ; 13:4, s. 447-461
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid development and increasing inter- and multi-disciplinarity of life sciences call for revisions of life science course curricula, recognizing (inter alia) the need to compromise between covering specific phenomena and general processes/principles. For these reasons there have been several initiatives to standardize curricula, and various authors have assessed general curricular requirements. The results have shown that teacher preferences strongly influence both topic arrangement and course content, and generating consensus among scientists and lecturers is challenging. Applying a somewhat different approach, we have focused on a limited part of the curriculum (cell metabolism). Using Delphi methodology, in four rounds of surveys we investigated phenomena that 15 experienced, practicing lecturers consider to be central aspects for students to learn in the cell metabolism module of an introductory university course.The overall aim was to identify learning goals of special concern, i.e. aspects considered by the teachers to be both central and difficult for students to understand. Our informants emphasized learning goals of overarching and principal type, e.g. to be able to couple different system levels (from molecules to cells to organisms) and grasp the interactions between them. However, they also expect detailed knowledge, e.g. to know the structure of central biomolecules and metabolites. The main result of the study is a ranked list of learning goals of special concern in cell metabolism. We also identified both important learning goals and difficulties that have not been previously reported (even though they are covered by most textbooks), e.g. that energy production occurs in well-regulated steps and the necessity of proximity and common intermediates for coupled reactions.
  •  
32.
  • Stadig Degerman, Mari, et al. (författare)
  • Learning Goals and Conceptual Difficulties in Cell Metabolism : An explorative study of university lectures' views
  • 2012
  • Ingår i: Chemistry Education Research and Practice. - 1756-1108. ; 13:4, s. 447-461
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid development and increasing inter- and multi-disciplinarity of life sciences call for revisions of life science course curricula, recognizing (inter alia) the need to compromise between covering specific phenomena and general processes/principles. For these reasons there have been several initiatives to standardize curricula, and various authors have assessed general curricular requirements. The results have shown that teacher preferences strongly influence both topic arrangement and course content, and generating consensus among scientists and lecturers is challenging. Applying a somewhat different approach, we have focused on a limited part of the curriculum (cell metabolism). Using Delphi methodology, in four rounds of surveys we investigated phenomena that 15 experienced, practicing lecturers consider to be central aspects for students to learn in the cell metabolism module of an introductory university course.The overall aim was to identify learning goals of special concern, i.e. aspects considered by the teachers to be both central and difficult for students to understand. Our informants emphasized learning goals of overarching and principal type, e.g. to be able to couple different system levels (from molecules to cells to organisms) and grasp the interactions between them. However, they also expect detailed knowledge, e.g. to know the structure of central biomolecules and metabolites. The main result of the study is a ranked list of learning goals of special concern in cell metabolism. We also identified both important learning goals and difficulties that have not been previously reported (even though they are covered by most textbooks), e.g. that energy production occurs in well-regulated steps and the necessity of proximity and common intermediates for coupled reactions.
  •  
33.
  • Tibell, Lena A.E. 1952-, et al. (författare)
  • Haptic Influences on Reasoning and Learning in Protein Education
  • 2008
  • Ingår i: Proceedings of the 9th Nordic Research Symposium on Science Education. - : Science Education Research Group, School of Education, University of Iceland. - 9789979985174 ; , s. 165-168
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • An emerging viewpoint of cognition suggests that the body has a central role in shaping the mind and that cognitive processes are deeply rooted in the body´s interaction with the world that, “embodied cognition or learning”. If so, the documented difficulties for learners to grasp and to engage in molecular sciences might, at least in part, explained by the lack of direct experience of the micro world. The term haptics encompasses the tactual sensation and the human interaction with the external environment through touch. When integrated as part of a computer-based virtual environment, haptics refers to the artificial tactual sensation used to simulate the experience of actually touching or feeling a real object that occur in response to user movements.  The present work aims to evaluate the gains of a haptic element from a learning perspective, when haptics is added to an educational virtual reality environment for students learning the concepts of molecular interactions in proteins. A combined qualitative and quantitative approach is taken, using data from tests and interviews (with a subset of the subjects).  The study is an attempt to fill some of the gaps in the research about possible benefits from using force feedback technology, focusing specifically on the learning gains from a study of a virtual protein model. The computer model did not help the students to solve their tasks faster, but it appears to help them to gain a deeper understanding of the docking process, partly by challenging their preconceptions. Further, we propose that the force feedback might constitute a critical feature for understanding the involvement of the dynamics and forces involved in the process.
  •  
34.
  • Tibell, Lena A.E. 1952-, et al. (författare)
  • Lowering the Threshold - New Approaches for Teaching and Learning Evolution
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • The theory of evolution is widely considered to be one of the most important and groundbreaking theories in science history and essentially underpins all modern biology, from ecology through to medicine. Darwin's theory of evolution explains how all life is related and has descended from a common ancestor. Since the theory of evolution was first presented more than 150 years ago, results from across the life sciences have verified and enhanced details of this theory. There are a multitude of implications of direct societal importance for evolutionary aspects, e.g. antibiotic resistance, emergence of new diseases as well as responses and adaptations to climate change. Therefore, a meaningful understanding of evolutionary theory is essential for many areas of individual, social and scientific life. However, science education research has shown that the theory of evolution presents severe problems to learners, and many teaching strategies have failed or proven to be inefficient to solve them (e.g. Kampourakis & Zogza, 2008). Taking this knowledge into account the aim of our contribution is to propose new ways of teaching, learning and probing understanding about evolution. The first study applies the method of learning with worked examples to learning evolution. Worked examples have been shown to support the understanding of demanding scientific contents as well as of contents in other disciplines by empirical investigations (Chi et al., 1994). Here, worked examples are used in a very differentiated way, i.e. adjusted to the prior knowledge of the students. The second study attempts a new way to explore students’ conceptions of evolution by using student-generated animations. In many studies, students’ conceptions of evolution have been probed using interviews as well as paper and pencil tests, ranging from multiple-choice questionnaires to essays (e.g. Balgopal & Montplaisir, 2009). However, Nehm and Schonfeld (2008) showed that students’ results are strongly dependent on the particular method applied. The second study investigates a new method of exploring students’ conceptions of evolution, i.e. animations, which were generated by the students themselves in a collaborative setting.Nehm and Reilly (2007) have suggested targeting misconceptions and core concepts as tools for explaining particular evolutionary scenarios. This would be in line with well-established conceptual change theories in science education (Strike & Posner 1992). The third, fourth and fifth study of our symposium is linked to these considerations. They focus on fundamental features of the evolutionary concept, i.e. thresholds concepts such as randomness, probability or spatio-temporal scales, which the authors hypothesize to be necessary to grasp the theory of evolution. The construct of evolution is composed of fundamental abstract ideas. Some of these concepts are in fact contra-intuitive and have to be connected in complex conceptual patterns for a full comprehension of evolution theory. Evolution spans spatial and temporal scales, from the development of life and species over millions of years, to the explanations of events that occur at the cellular and molecular level, and in time scales from microseconds to minutes and hours. Some kinds of visualizations are needed for making these concepts tangible for learners. Thousands of animations, dealing with evolution, are available on the Internet. The third paper presented proposes a criteria catalogue covering multiple evolutionary aspects including threshold concepts for the evaluation of animations meant for explaining evolution. The aim of this study was to map the presence (or absence) of important concepts in dynamic educational visualizations on evolution. By using the developed criteria catalogue, the study elucidates what concepts are focused on in animations, video clips and simulations and whether there are relevant evolutionary concepts in these media that are seldom represented or not represented at all. Paper four goes one step further: the explorative study shows the development and evaluation of a novel interactive visualization application intended to convey key mechanisms of natural selection such as random variation, selection and development over generations. The aim was to investigate students reasoning while working with this interactive simulation application stressing the threshold concept of randomness in the context of genetic variation. The final study presented in this contribution aims to investigate if problems in understanding evolution as well as in the development of misconceptions can be overcome by fostering the understanding of the threshold concept randomness.Through this contribution, the authors aim to contribute to further development of the teaching and learning of evolution at secondary as well as higher educational levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
konferensbidrag (14)
tidskriftsartikel (9)
annan publikation (7)
doktorsavhandling (3)
proceedings (redaktörskap) (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (1)
Författare/redaktör
Tibell, Lena A. E. (16)
Tibell, Lena A. E., ... (15)
Bohlin, Gustav, 1981 ... (6)
Bivall, Petter, 1979 ... (4)
Göransson, Andreas C ... (4)
Rundgren, Carl-Johan ... (4)
visa fler...
Jonsson, Bengt-Haral ... (3)
Höst, Gunnar E., 197 ... (3)
Ahl, Ing-Marie, 1974 ... (2)
Larsson, Caroline (2)
Tibell, Lena A. E., ... (2)
Harms, Ute (2)
Schönborn, Konrad J (2)
Museth, Anna Katrine (2)
Hirsch, Richard (2)
Bivall Persson, Pett ... (2)
Rundgren, Carl-Johan (1)
Nelson, Sally K (1)
Enström, Camilla (1)
Ericson, Ann-Charlot ... (1)
Lundqvist, Martin (1)
Andersson, Johanna (1)
Ynnerman, Anders (1)
Ynnerman, Anders, Pr ... (1)
Orraryd, Daniel (1)
Gericke, Niklas (1)
Chang Rundgren, Shu- ... (1)
Ainsworth, Shaaron (1)
Cooper, Matthew D., ... (1)
Reiner, Miriam, Asso ... (1)
Bivall Persson, Pett ... (1)
Cooper, Matthew D., ... (1)
Rundgren, Carl-Johan ... (1)
Höst, Gunnar, 1976- (1)
Härting, Jennifer (1)
Höst, Gunnar E. (1)
Höst, Gunnar, Dr. 19 ... (1)
Zabel, Jörg, Profess ... (1)
Jahic Pettersson, Al ... (1)
Schönborn, Konrad, 1 ... (1)
Skar, Helena (1)
Schönborn, Konrad J. ... (1)
Olson, Arthur (1)
Koc-Januchta, Marta (1)
Chaudhri, Vinay K. (1)
Heller, H. Craig (1)
Brorsson, Anna-Chris ... (1)
Tibell, Lena A E, Do ... (1)
Hirsch, Richard, Doc ... (1)
Harms, Ute, Professo ... (1)
visa färre...
Lärosäte
Linköpings universitet (32)
Mälardalens universitet (2)
Stockholms universitet (1)
Karlstads universitet (1)
Språk
Engelska (33)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Samhällsvetenskap (23)
Naturvetenskap (9)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy