SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tiberi U.) "

Sökning: WFRF:(Tiberi U.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alffenaar, J. W. C., et al. (författare)
  • Clinical standards for the dosing and management of TB drugs
  • 2022
  • Ingår i: The International Journal of Tuberculosis and Lung Disease. - Paris, France : International Union Against Tuberculosis and Lung Disease. - 1027-3719 .- 1815-7920. ; 26:6, s. 483-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice' for dosing and management of TB drugs.Methods: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.Results: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.Conclusion: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
  •  
2.
  • Di Benedetto, M. D., et al. (författare)
  • Networked control
  • 2009
  • Ingår i: Handbook of Hybrid Systems Control. - : Cambridge University Press. - 9780521765053
  • Bokkapitel (refereegranskat)
  •  
3.
  • Di Benedetto, M. D., et al. (författare)
  • Wireless ventilation control for large-scale systems : The mining industrial case
  • 2009
  • Ingår i: 2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops. - 9781424439386
  • Konferensbidrag (refereegranskat)abstract
    • Mining ventilation is an interesting example of a large scale system with high environmental impact where advanced control strategies can bring major improvements. Indeed, one of the first objectives of modern mining industry is to fulfill environmental specifications [1] during the ore extraction and crushing, by optimizing the energy consumption or the production of polluting agents. The mine electric consumption was 4 % of total industrial electric demand in the US in 1994 (6 % in 2007 in South Africa) and 90 % of it was related to motor system energy [2]. Another interesting figure is given in [3] where it is estimated that the savings associated with global control strategies for fluid systems (pumps, fans and compressors) represent approximately 20 % of the total manufacturing motor system energy savings. This motivates the development of new control strategies for large scale aerodynamic processes based on appropriate automation and a global consideration of the system. More specifically, the challenge in this work is focused on the mining ventilation since as much as 50 % or more of the energy consumed by the mining process may go into the ventilation (including heating the air). It is clear that investigating automatic control solutions and minimizing the amount of pumped air to save energy consumption (proportional to the cube of airflow quantity [4]) is of great environmental and industrial interest.
  •  
4.
  • du Cros, P, et al. (författare)
  • Standards for clinical trials for treating TB
  • 2023
  • Ingår i: The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease. - 1815-7920. ; 27:12, s. 885-898
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Tiberi, U., et al. (författare)
  • A simple self-triggered sampler for perturbed nonlinear systems
  • 2013
  • Ingår i: Nonlinear Analysis. - : Elsevier BV. - 1751-570X .- 1878-7460. ; 10:1, s. 126-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-triggered control is a recent design paradigm for resource-constrained networked control systems. By allocating aperiodic sampling instances for a digital control loop, a self-triggered controller is able to utilize network resources more efficiently than conventional sampled-data systems. In this paper we propose a self-triggered sampler for perturbed nonlinear systems ensuring uniformly ultimately boundedness of trajectories. Robustness and time delays are considered. To reduce conservativeness, a disturbance observer for the self-triggered sampler is proposed. The effectiveness of the proposed method is shown by simulation.
  •  
13.
  • Tiberi, U., et al. (författare)
  • Self-triggered control of multiple loops over IEEE 802.15.4 networks
  • 2011
  • Ingår i: IFAC Proceedings Volumes. - 9783902661937 ; , s. 13893-13898
  • Konferensbidrag (refereegranskat)abstract
    • Given the communication savings offered by self-triggered sampling, it is becoming an essential paradigm for closed-loop control over energy-constrained wireless sensor networks (WSNs). The understanding of the performance of self-triggered control systems when the feedback loops are closed over IEEE 802.15.4 WSNs is of major interest, since the communication standard IEEE 802.15.4 is the de-facto the reference protocol for energy-efficient WSNs. In this paper, a new approach to control several processes over a shared IEEE 802.15.4 network by self-triggered sampling is proposed. It is shown that the sampling time of the processes, the protocol parameters, and the scheduling of the transmissions must be jointly selected to ensure stability of the processes and energy efficiency of the network. The challenging part of the proposed analysis is ensuring stability and making an energy efficient scheduling of the state transmissions. These transmissions over IEEE 802.15.4 are allowed only at certain time slots, which are difficult to schedule when multiple control loops share the network. The approach establishes that the joint design of self-triggered samplers and the network protocol 1) ensures the stability of each loop, 2) increases the network capacity, 3) reduces the number of transmissions of the nodes, and 4) increases the sleep time of the nodes. A new dynamic scheduling problem is proposed to control each process, adapt the protocol parameters, and reduce the energy consumption. An algorithm is then derived, which adapts to any choice of the self-triggered samplers of every control loop. Numerical examples illustrate the analysis and show the benefits of the new approach.
  •  
14.
  •  
15.
  • Witrant, E., et al. (författare)
  • Wireless ventilation control for large-scale systems : The mining industrial case
  • 2010
  • Ingår i: International Journal of Robust and Nonlinear Control. - : Wiley. - 1049-8923 .- 1099-1239. ; 20:2, s. 226-251
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes a new industrial case on automation, for large-scale systems with high environmental impact: the mining ventilation control systems. Ventilation control is essential for the operation of a mine in terms of safety (CO and NO, regulation) and energy optimization. We first discuss a novel regulation architecture, highlighting the interest for a model-based control approach and the use of distributed sensing capabilities thanks to a wireless sensor network (WSN). We propose a new model for underground ventilation. The main components of the system dynamics are described with time-delays, transmission errors, energy losses and concentration profiles. Two different model-based control approaches, which can embody the complex dynamics of the system, are proposed. The first one resorts to a nonlinear model predictive control strategy (receding horizon) and aims to energy minimization, thanks to a continuous operation of the fans. The second one, based on a hybrid description of the model and fans operation, provides automatic verification of the wireless control thanks to abstraction techniques. These control strategies are compared with simulations, in terms of regulation efficiency, energy consumption and the need for computational capabilities. The industrial case description and control strategies open new vistas for the development of global system approaches that allow for the optimization of energy consumption of complex large-scale systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy