SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tippenhauer Sandra) "

Sökning: WFRF:(Tippenhauer Sandra)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Koch, Xianyu, et al. (författare)
  • Variability of Dissolved Organic Matter Sources in the Upper Eurasian Arctic Ocean
  • 2024
  • Ingår i: Journal of Geophysical Research - Oceans. - 0148-0227 .- 2156-2202. ; 129, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromophoric dissolved organic matter (CDOM) is a ubiquitous component in marine environments, and substantial changes in its sources and distribution, related to the carbon cycle in the Arctic Ocean, are expected due to Arctic warming. In this study, we present unique CDOM data in the Eurasian Arctic Ocean derived from the year‐round MOSAiC expedition. We used CDOM absorbance spectra and fluorescence excitation‐emission matrices in combination with parallel factor analysis to characterize differences in DOM sources and composition. Our results suggested that terrestrial DOM was less sensitive to seasonal changes but controlled by regionality in hydrography. Elevated dissolved organic carbon (DOC) levels in polar surface water were primarily derived from terrigenous sources as identified by CDOM absorption and fluorescence characteristics. In the Amundsen Basin and western Fram Strait surface waters, to which terrestrial DOM is primarily transported by the Transpolar Drift, we found, on average, a 188% larger meteoric water fraction and a 40% higher DOC concentration compared to the Atlantic water that dominated western Nansen Basin and Yermak Plateau. In the Amundsen Basin, the DOC concentration in summer of surface water was only 13% higher compared to winter season. Additionally, autochthonous DOM and chlorophyll‐a concentrations were relatively low in surface water and exhibited significant differences compared to those observed in summer, while there were significant differences between autochthonous DOM and chlorophyll‐a. We also observed that sea ice melt contributed to autochthonous DOM in summer, while storms in winter affected the vertical distribution of terrestrial and autochthonous DOM in the subsurface.
  •  
3.
  • Schulz, Kirstin, et al. (författare)
  • The Eurasian Arctic Ocean along the MOSAiC drift in 2019-2020: An interdisciplinary perspective on physical properties and processes
  • 2024
  • Ingår i: ELEMENTA-SCIENCE OF THE ANTHROPOCENE. - 2325-1026. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC, 2 019-2 02 0), a year-long drift with the Arctic sea ice, has provided the scientific community with an unprecedented, multidisciplinary dataset from the Eurasian Arctic Ocean, covering high atmosphere to deep ocean across all seasons. However, the heterogeneity of data and the superposition of spatial and temporal variability, intrinsic to a drift campaign, complicate the interpretation of observations. In this study, we have compiled a qualitycontrolled physical hydrographic dataset with best spatio-temporal coverage and derived core parameters, including the mixed layer depth, heat fluxes over key layers, and friction velocity. We provide a comprehensive and accessible overview of the ocean conditions encountered along the MOSAiC drift, discuss their interdisciplinary implications, and compare common ocean climatologies to these new data. Our results indicate that, for the most part, ocean variability was dominated by regional rather than seasonal signals, carrying potentially strong implications for ocean biogeochemistry, ecology, sea ice, and even atmospheric conditions. Near-surface ocean properties were strongly influenced by the relative position of sampling, within or outside the river-water influenced Transpolar Drift, and seasonal warming and meltwater input. Ventilation down to the Atlantic Water layer in the Nansen Basin allowed fora stronger connectivity between subsurface heat and the sea ice and surface ocean via elevated upward heat fluxes. The Yermak Plateau and Fram Strait regions were characterized by heterogeneous water mass distributions, energetic ocean currents, and stronger lateral gradients in surface water properties in frontal regions. Together with the presented results and core parameters, we offer context for interdisciplinary research, fostering an improved understanding of the complex, coupled Arctic System.
  •  
4.
  • Smith, Madison M., et al. (författare)
  • Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features
  • 2023
  • Ingår i: Elementa: Science of the Anthropocene. - 2325-1026. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet longlasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material.The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
  •  
5.
  • Snoeijs-Leijonmalm, Pauline, 1956-, et al. (författare)
  • Unexpected fish and squid in the central Arctic deep scattering layer
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The retreating ice cover of the Central Arctic Ocean (CAO) fuels speculations on future fisheries. However, very little is known about the existence of harvestable fish stocks in this 3.3 million-square kilometer ecosystem around the North Pole. Crossing the Eurasian Basin, we documented an uninterrupted 3170-kilometer-long deep scattering layer (DSL) with zooplankton and small fish in the Atlantic water layer at 100- to 500-meter depth. Diel vertical migration of this central Arctic DSL was lacking most of the year when daily light variation was absent. Unexpectedly, the DSL also contained low abundances of Atlantic cod, along with lanternfish, armhook squid, and Arctic endemic ice cod. The Atlantic cod originated from Norwegian spawning grounds and had lived in Arctic water temperature for up to 6 years. The potential fish abundance was far below commercially sustainable levels and is expected to remain so because of the low productivity of the CAO.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy