SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tirschwell David L) "

Sökning: WFRF:(Tirschwell David L)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Naghavi, Mohsen, et al. (författare)
  • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 385:9963, s. 117-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
  •  
2.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
3.
  • Feigin, Valery L, et al. (författare)
  • Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016.
  • 2018
  • Ingår i: The New England journal of medicine. - 1533-4406 .- 0028-4793. ; 379:25, s. 2429-2437
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime risk of stroke has been calculated in a limited number of selected populations. We sought to estimate the lifetime risk of stroke at the regional, country, and global level using data from a comprehensive study of the prevalence of major diseases.We used the Global Burden of Disease (GBD) Study 2016 estimates of stroke incidence and the competing risks of death from any cause other than stroke to calculate the cumulative lifetime risks of first stroke, ischemic stroke, or hemorrhagic stroke among adults 25 years of age or older. Estimates of the lifetime risks in the years 1990 and 2016 were compared. Countries were categorized into quintiles of the sociodemographic index (SDI) used in the GBD Study, and the risks were compared across quintiles. Comparisons were made with the use of point estimates and uncertainty intervals representing the 2.5th and 97.5th percentiles around the estimate.The estimated global lifetime risk of stroke from the age of 25 years onward was 24.9% (95% uncertainty interval, 23.5 to 26.2); the risk among men was 24.7% (95% uncertainty interval, 23.3 to 26.0), and the risk among women was 25.1% (95% uncertainty interval, 23.7 to 26.5). The risk of ischemic stroke was 18.3%, and the risk of hemorrhagic stroke was 8.2%. In high-SDI, high-middle-SDI, and low-SDI countries, the estimated lifetime risk of stroke was 23.5%, 31.1% (highest risk), and 13.2% (lowest risk), respectively; the 95% uncertainty intervals did not overlap between these categories. The highest estimated lifetime risks of stroke according to GBD region were in East Asia (38.8%), Central Europe (31.7%), and Eastern Europe (31.6%), and the lowest risk was in eastern sub-Saharan Africa (11.8%). The mean global lifetime risk of stroke increased from 22.8% in 1990 to 24.9% in 2016, a relative increase of 8.9% (95% uncertainty interval, 6.2 to 11.5); the competing risk of death from any cause other than stroke was considered in this calculation.In 2016, the global lifetime risk of stroke from the age of 25 years onward was approximately 25% among both men and women. There was geographic variation in the lifetime risk of stroke, with the highest risks in East Asia, Central Europe, and Eastern Europe. (Funded by the Bill and Melinda Gates Foundation.).
  •  
4.
  • Anderson, Christopher D., et al. (författare)
  • Genetic variants in CETP increase risk of intracerebral hemorrhage
  • 2016
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 80:5, s. 730-740
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740.
  •  
5.
  • Woo, Daniel, et al. (författare)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
6.
  • Falcone, Guido J., et al. (författare)
  • Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage
  • 2012
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 43:11, s. 2877-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Genetic variation influences risk of intracerebral hemorrhage (ICH). Hypertension (HTN) is a potent risk factor for ICH and several common genetic variants (single nucleotide polymorphisms [SNPs]) associated with blood pressure levels have been identified. We sought to determine whether the cumulative burden of blood pressure-related SNPs is associated with risk of ICH and pre-ICH diagnosis of HTN. Methods-We conducted a prospective multicenter case-control study in 2272 subjects of European ancestry (1025 cases and 1247 control subjects). Thirty-nine SNPs reported to be associated with blood pressure levels were identified from the National Human Genome Research Institute genomewide association study catalog. Single-SNP association analyses were performed for the outcomes ICH and pre-ICH HTN. Subsequently, weighted and unweighted genetic risk scores were constructed using these SNPs and entered as the independent variable in logistic regression models with ICH and pre-ICH HTN as the dependent variables. Results-No single SNP was associated with either ICH or pre-ICH HTN. The blood pressure-based unweighted genetic risk score was associated with risk of ICH (OR, 1.11; 95% CI, 1.02-1.21; P=0.01) and the subset of ICH in deep regions (OR, 1.18; 95% CI, 1.07-1.30; P=0.001), but not with the subset of lobar ICH. The score was associated with a history of HTN among control subjects (OR, 1.17; 95% CI, 1.04-1.31; P=0.009) and ICH cases (OR, 1.15; 95% CI, 1.01-1.31; P=0.04). Similar results were obtained when using a weighted score. Conclusion-Increasing numbers of high blood pressure-related alleles are associated with increased risk of deep ICH as well as with clinically identified HTN. (Stroke. 2012; 43: 2877-2883.)
  •  
7.
  • Pandian, Jeyaraj Durai, et al. (författare)
  • Strategies to Improve Stroke Care Services in Low- and Middle-Income Countries : A Systematic Review
  • 2017
  • Ingår i: Neuroepidemiology. - : S. Karger AG. - 0251-5350 .- 1423-0208. ; 49, s. 45-61
  • Forskningsöversikt (refereegranskat)abstract
    • Background: The burden of stroke in low- and middle-income countries (LMICs) is large and increasing, challenging the already stretched health-care services. Aims and Objectives: To determine the quality of existing stroke-care services in LMICs and to highlight indigenous, inexpensive, evidence-based implementable strategies being used in stroke-care. Methods: A detailed literature search was undertaken using PubMed and Google scholar from January 1966 to October 2015 using a range of search terms. Of 921 publications, 373 papers were shortlisted and 31 articles on existing stroke-services were included. Results: We identified efficient models of ambulance transport and pre-notification. Stroke Units (SU) are available in some countries, but are relatively sparse and mostly provided by the private sector. Very few patients were thrombolysed; this could be increased with telemedicine and governmental subsidies. Adherence to secondary preventive drugs is affected by limited availability and affordability, emphasizing the importance of primary prevention. Training of paramedics, care-givers and nurses in post-stroke care is feasible. Conclusion: In this systematic review, we found several reports on evidence-based implementable stroke services in LMICs. Some strategies are economic, feasible and reproducible but remain untested. Data on their outcomes and sustainability is limited. Further research on implementation of locally and regionally adapted stroke-services and cost-effective secondary prevention programs should be a priority.
  •  
8.
  • Anderson, Christopher D., et al. (författare)
  • Common Variants Within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage
  • 2013
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:3, s. 612-619
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Previous studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods-This association study used a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing gene-set enrichment analysis were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results-IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio [OR], 1.17; P=0.008) and complex I (OR, 1.06; P=0.050). Among IS subtypes, small vessel stroke showed association with OXPHOS (OR, 1.16; P=0.007), complex I (OR, 1.13; P=0.027), and complex IV (OR, 1.14; P=0.018). To further explore this small vessel association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and complex IV (OR, 1.08; P=0.008). Conclusions-This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for small vessel stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. (Stroke. 2013;44:612-619.)
  •  
9.
  • Biffi, Alessandro, et al. (författare)
  • APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study
  • 2011
  • Ingår i: Lancet Neurology. - 1474-4465. ; 10:8, s. 702-709
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Carriers of APOE epsilon 2 and epsilon 4 have an increased risk of intracerebral haemorrhage (ICH) in lobar regions, presumably because of the effects of these gene variants on risk of cerebral amyloid angiopathy. We aimed to assess whether these variants also associate with severity of ICH, in terms of haematoma volume at presentation and subsequent outcome. Methods We investigated the association of APOE epsilon 2 and epsilon 4 with ICH volume and outcomes in patients with primary ICH in three phases: a discovery phase of 865 individuals of European ancestry from the Genetics of Cerebral Hemorrhage on Anticoagulation study, and replication phases of 946 Europeans (replication 1) and 214 African-Americans (replication 2) from an additional six studies. We also assessed the association of APOE variants with ICH volume and outcomes in meta-analyses of results from all three phases, and the association of APOE epsilon 4 with mortality in a further meta-analysis including data from previous reports. Admission ICH volume was quantified on CT scan. We assessed functional outcome (modified Rankin scale score 3-6) and mortality at 90 days. We used linear regression to establish the effect of genotype on haematoma volume and logistic regression to assess the effect on outcome from ICH. Findings For patients with lobar ICH, carriers of the APOE epsilon 2 allele had larger ICH volumes than did non-carriers in the discovery phase (p=2. 5x10(-5)), in both replication phases (p=0.008 in Europeans and p=0.016 in African-Americans), and in the meta-analysis (p=3.2x10(-8)). In the meta-analysis, each copy of APOE epsilon 2 increased haematoma size by a mean of 5.3 mL (95% CI 4.7-5.9; p=0.004). Carriers of APOE epsilon 2 had increased mortality (odds ratio [OR] 1.50, 95% CI 1.23-1.82; p=2.45x10(-5)) and poorer functional outcomes (modified Rankin scale score 3-6; 1-52, 1.25-1.85; p=1.74x10(-5)) compared with non-carriers after lobar ICH. APOE epsilon 4 was not associated with lobar ICH volume, functional outcome, or mortality in the discovery phase, replication phases, or meta-analysis of these three phases; in our further meta-analysis of 2194 patients, this variant did not increase risk of mortality (1.08,0.86-1.36; p=0.52). APOE allele variants were not associated with deep ICH volume, functional outcome, or mortality. Interpretation Vasculopathic changes associated with the APOE epsilon 2 allele might have a role in the severity and clinical course of lobar ICH. Screening of patients who have ICH to identify the epsilon 2 variant might allow identification of those at increased risk of mortality and poor functional outcomes.
  •  
10.
  •  
11.
  • Chung, Jaeyoon, et al. (författare)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
12.
  • Devan, William J., et al. (författare)
  • Heritability Estimates Identify a Substantial Genetic Contribution to Risk and Outcome of Intracerebral Hemorrhage
  • 2013
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:6, s. 1578-1583
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Previous studies suggest that genetic variation plays a substantial role in occurrence and evolution of intracerebral hemorrhage (ICH). Genetic contribution to disease can be determined by calculating heritability using family-based data, but such an approach is impractical for ICH because of lack of large pedigree-based studies. However, a novel analytic tool based on genome-wide data allows heritability estimation from unrelated subjects. We sought to apply this method to provide heritability estimates for ICH risk, severity, and outcome. Methods-We analyzed genome-wide genotype data for 791 ICH cases and 876 controls, and determined heritability as the proportion of variation in phenotype attributable to captured genetic variants. Contribution to heritability was separately estimated for the APOE (encoding apolipoprotein E) gene, an established genetic risk factor, and for the rest of the genome. Analyzed phenotypes included ICH risk, admission hematoma volume, and 90-day mortality. Results-ICH risk heritability was estimated at 29% (SE, 11%) for non-APOE loci and at 15% (SE, 10%) for APOE. Heritability for 90-day ICH mortality was 41% for non-APOE loci and 10% (SE, 9%) for APOE. Genetic influence on hematoma volume was also substantial: admission volume heritability was estimated at 60% (SE, 70%) for non-APOE loci and at 12% (SE, 4%) for APOE. Conclusions-Genetic variation plays a substantial role in ICH risk, outcome, and hematoma volume. Previously reported risk variants account for only a portion of inherited genetic influence on ICH pathophysiology, pointing to additional loci yet to be identified.
  •  
13.
  • Falcone, Guido J., et al. (författare)
  • Genetically Elevated LDL Associates with Lower Risk of Intracerebral Hemorrhage
  • 2020
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 88:1, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Observational studies point to an inverse correlation between low-density lipoprotein (LDL) cholesterol levels and risk of intracerebral hemorrhage (ICH), but it remains unclear whether this association is causal. We tested the hypothesis that genetically elevated LDL is associated with reduced risk of ICH. Methods: We constructed one polygenic risk score (PRS) per lipid trait (total cholesterol, LDL, high-density lipoprotein [HDL], and triglycerides) using independent genomewide significant single nucleotide polymorphisms (SNPs) for each trait. We used data from 316,428 individuals enrolled in the UK Biobank to estimate the effect of each PRS on its corresponding trait, and data from 1,286 ICH cases and 1,261 matched controls to estimate the effect of each PRS on ICH risk. We used these estimates to conduct Mendelian Randomization (MR) analyses. Results: We identified 410, 339, 393, and 317 lipid-related SNPs for total cholesterol, LDL, HDL, and triglycerides, respectively. All four PRSs were strongly associated with their corresponding trait (all p < 1.00 × 10-100). While one SD increase in the PRSs for total cholesterol (odds ratio [OR] = 0.92; 95% confidence interval [CI] = 0.85–0.99; p = 0.03) and LDL cholesterol (OR = 0.88; 95% CI = 0.81–0.95; p = 0.002) were inversely associated with ICH risk, no significant associations were found for HDL and triglycerides (both p > 0.05). MR analyses indicated that 1mmol/L (38.67mg/dL) increase of genetically instrumented total and LDL cholesterol were associated with 23% (OR = 0.77; 95% CI = 0.65–0.98; p = 0.03) and 41% lower risks of ICH (OR = 0.59; 95% CI = 0.42–0.82; p = 0.002), respectively. Interpretation: Genetically elevated LDL levels were associated with lower risk of ICH, providing support for a potential causal role of LDL cholesterol in ICH. ANN NEUROL 2020.
  •  
14.
  • Marini, Sandro, et al. (författare)
  • 17p12 Influences Hematoma Volume and Outcome in Spontaneous Intracerebral Hemorrhage
  • 2018
  • Ingår i: Stroke. - 0039-2499. ; 49:7, s. 1618-1625
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Hematoma volume is an important determinant of clinical outcome in spontaneous intracerebral hemorrhage (ICH). We performed a genome-wide association study (GWAS) of hematoma volume with the aim of identifying novel biological pathways involved in the pathophysiology of primary brain injury in ICH. Methods-We conducted a 2-stage (discovery and replication) case-only genome-wide association study in patients with ICH of European ancestry. We utilized the admission head computed tomography to calculate hematoma volume via semiautomated computer-Assisted technique. After quality control and imputation, 7 million genetic variants were available for association testing with ICH volume, which was performed separately in lobar and nonlobar ICH cases using linear regression. Signals with P<5×10- 8 were pursued in replication and tested for association with admission Glasgow coma scale and 3-month post-ICH dichotomized (0-2 versus 3-6) modified Rankin Scale using ordinal and logistic regression, respectively. Results-The discovery phase included 394 ICH cases (228 lobar and 166 nonlobar) and identified 2 susceptibility loci: A genomic region on 22q13 encompassing PARVB (top single-nucleotide polymorphism rs9614326: β, 1.84; SE, 0.32; P=4.4×10-8) for lobar ICH volume and an intergenic region overlying numerous copy number variants on 17p12 (top single-nucleotide polymorphism rs11655160: β, 0.95; SE, 0.17; P=4.3×10-8) for nonlobar ICH volume. The replication included 240 ICH cases (71 lobar and 169 nonlobar) and corroborated the association for 17p12 (P=0.04; meta-Analysis P=2.5×10-9; heterogeneity, P=0.16) but not for 22q13 (P=0.49). In multivariable analysis, rs11655160 was also associated with lower admission Glasgow coma scale (odds ratio, 0.17; P=0.004) and increased risk of poor 3-month modified Rankin Scale (odds ratio, 1.94; P=0.045). Conclusions-We identified 17p12 as a novel susceptibility risk locus for hematoma volume, clinical severity, and functional outcome in nonlobar ICH. Replication in other ethnicities and follow-up translational studies are needed to elucidate the mechanism mediating the observed association.
  •  
15.
  • Balabanski, Anna H., et al. (författare)
  • Incidence of stroke in indigenous populations of countries with a very high human development index : a systematic review
  • 2024
  • Ingår i: Neurology. - : American Academy of Neurology. - 0028-3878 .- 1526-632X. ; 102:5
  • Forskningsöversikt (refereegranskat)abstract
    • Background and objectives: Cardiovascular disease contributes significantly to disease burden among many Indigenous populations. However, data on stroke incidence in Indigenous populations are sparse. We aimed to investigate what is known of stroke incidence in Indigenous populations of countries with a very high Human Development Index (HDI), locating the research in the broader context of Indigenous health.Methods: We identified population-based stroke incidence studies published between 1990 and 2022 among Indigenous adult populations of developed countries using PubMed, Embase, and Global Health databases, without language restriction. We excluded non-peer-reviewed sources, studies with fewer than 10 Indigenous people, or not covering a 35- to 64-year minimum age range. Two reviewers independently screened titles, abstracts, and full-text articles and extracted data. We assessed quality using "gold standard" criteria for population-based stroke incidence studies, the Newcastle-Ottawa Scale for risk of bias, and CONSIDER criteria for reporting of Indigenous health research. An Indigenous Advisory Board provided oversight for the study.Results: From 13,041 publications screened, 24 studies (19 full-text articles, 5 abstracts) from 7 countries met the inclusion criteria. Age-standardized stroke incidence rate ratios were greater in Aboriginal and Torres Strait Islander Australians (1.7-3.2), American Indians (1.2), Sámi of Sweden/Norway (1.08-2.14), and Singaporean Malay (1.7-1.9), compared with respective non-Indigenous populations. Studies had substantial heterogeneity in design and risk of bias. Attack rates, male-female rate ratios, and time trends are reported where available. Few investigators reported Indigenous stakeholder involvement, with few studies meeting any of the CONSIDER criteria for research among Indigenous populations.Discussion: In countries with a very high HDI, there are notable, albeit varying, disparities in stroke incidence between Indigenous and non-Indigenous populations, although there are gaps in data availability and quality. A greater understanding of stroke incidence is imperative for informing effective societal responses to socioeconomic and health disparities in these populations. Future studies into stroke incidence in Indigenous populations should be designed and conducted with Indigenous oversight and governance to facilitate improved outcomes and capacity building.
  •  
16.
  • Balabanski, Anna H., et al. (författare)
  • The Incidence of Stroke in Indigenous Populations of Countries With a Very High Human Development Index : A Systematic Review Protocol
  • 2021
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Background and Aims: Despite known Indigenous health and socioeconomic disadvantage in countries with a Very High Human Development Index, data on the incidence of stroke in these populations are sparse. With oversight from an Indigenous Advisory Board, we will undertake a systematic review of the incidence of stroke in Indigenous populations of developed countries or regions, with comparisons between Indigenous and non-Indigenous populations of the same region, though not between different Indigenous populations.Methods: Using PubMed, OVID-EMBASE, and Global Health databases, we will examine population-based incidence studies of stroke in Indigenous adult populations of developed countries published 1990-current, without language restriction. Non-peer-reviewed sources, studies including <10 Indigenous People, or with insufficient data to determine incidence, will be excluded. Two reviewers will independently validate the search strategies, screen titles and abstracts, and record reasons for rejection. Relevant articles will undergo full-text screening, with standard data extracted for all studies included. Quality assessment will include Sudlow and Warlow's criteria for population-based stroke incidence studies, the Newcastle-Ottawa Scale for risk of bias, and the CONSIDER checklist for Indigenous research.Results: Primary outcomes include crude, age-specific and/or age-standardized incidence of stroke. Secondary outcomes include overall stroke rates, incidence rate ratio and case-fatality. Results will be synthesized in figures and tables, describing data sources, populations, methodology, and findings. Within-population meta-analysis will be performed if, and where, methodologically sound and comparable studies allow this.Conclusion: We will undertake the first systematic review assessing disparities in stroke incidence in Indigenous populations of developed countries. Data outputs will be disseminated to relevant Indigenous stakeholders to inform public health and policy research.
  •  
17.
  • De Havenon, Adam, et al. (författare)
  • Variability of the Modified Rankin Scale Score between Day 90 and 1 Year after Ischemic Stroke
  • 2021
  • Ingår i: Neurology: Clinical Practice. - 2163-0402. ; 11:3, s. 239-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Studies indicate that the functional outcome evolves in the year after ischemic stroke onset. However, the traditional outcome measure in stroke trials is the modified Rankin Scale (mRS) at 90 days from onset. To determine mRS fluctuations in the first year after stroke, we examined data from 3 major stroke trials.MethodsIn a secondary analysis, we evaluated intrapatient mRS between 90 days and 1 year from stroke onset, the mRS shift (ΔmRS = 1 year-day 90), and the trials' primary outcome at day 90 and 1 yearResultsWe included 624 patients from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study, 587 from Albumin Treatment for Acute Ischaemic Stroke, and 611 from Interventional Management of Stroke III, for which the proportion of patients with a ΔmRS change between day 90 and 1 year was 36.5%, 41.7%, and 36.0%. However, the trials' primary outcomes did not differ at 1 year vs 90 days. Similar findings were seen in a second cohort where we pooled the trials and excluded patients with recurrent stroke or death during the follow-up. In those 1,314 patients, 544 (41.4%) had a ΔmRS change, of which 379 (28.9%) had improvement and 165 (12.5%) had worsening, apart from death.ConclusionWe describe the patient-level spectrum of mRS change from day 90 to 1 year after ischemic stroke in 3 high-quality randomized trials. The patient-level shifts consisted of a sufficiently counterbalanced number of mRS improvements and declines, which masked clinical evolution occurring in over one-third of patients. These results may have important implications, both for clinical trial design and outcome adjudication in stroke research and duration of rehabilitative therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Tirschwell, David L. (17)
Norrving, Bo (13)
Lindgren, Arne (11)
Meschia, James F (10)
Worrall, Bradford B. (10)
Selim, Magdy (10)
visa fler...
Rosand, Jonathan (9)
Anderson, Christophe ... (9)
Greenberg, Steven M. (9)
Silliman, Scott L. (9)
Slowik, Agnieszka (9)
Roquer, Jaume (9)
Woo, Daniel (9)
Brown, Devin L. (9)
Biffi, Alessandro (8)
Schmidt, Reinhold (8)
Jimenez-Conde, Jordi (8)
Ayres, Alison M. (7)
Kidwell, Chelsea S. (7)
Falcone, Guido J. (7)
Fernandez-Cadenas, I ... (7)
Feigin, Valery L. (6)
Thrift, Amanda G. (6)
Schwab, Kristin (6)
Viswanathan, Anand (6)
Goldstein, Joshua N. (6)
Montaner, Joan (6)
Jagiella, Jeremiasz ... (6)
Schmidt, Helena (6)
Pera, Joanna (6)
Devan, William J. (5)
Rost, Natalia S. (5)
Broderick, Joseph P. (5)
Hansen, Björn (5)
Giralt-Steinhauer, E ... (5)
Cuadrado-Godia, Elis ... (5)
Soriano, Carolina (5)
Urbanik, Andrzej (5)
Delgado, Pilar (5)
Hankey, Graeme J. (4)
Langefeld, Carl D. (4)
Geleijnse, Johanna M ... (4)
Gillum, Richard F. (4)
Jonas, Jost B. (4)
Roth, Gregory A. (4)
Kim, Daniel (4)
Mensah, George A. (4)
Elosua, Roberto (4)
Pichler, Alexander (4)
Enzinger, Christian (4)
visa färre...
Lärosäte
Lunds universitet (14)
Göteborgs universitet (3)
Karolinska Institutet (3)
Umeå universitet (2)
Uppsala universitet (2)
Högskolan Dalarna (2)
visa fler...
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy