SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toma Filofteia Laura) "

Sökning: WFRF:(Toma Filofteia Laura)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
  • 2015
  • Ingår i: Surface and Coatings Technology. - : Elsevier. - 0257-8972. ; 268, s. 70-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension Thermal Spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings. This technique enables the production of much different performance thermal barrier coatings than conventional thermal spraying which uses solid powder as a feedstock material. In this work a comparative study is performed on four different types of thermal barrier coatings sprayed with two different thermal spay processes, suspension high velocity oxy-fuel spraying (SHVOF) and suspension plasma spraying (SPS) using two different water-based suspensions. Tests carried out include microstructural analysis with SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis and lifetime assessment using thermo-cyclic fatigue tests. The results showed that SPS coatings were much porous and hence showed lower thermal conductivity than SHVOF coatings produced with the same suspension. From the thermo-cycling tests it was observed that the SPS coatings showed a higher lifetime than the SHVOF ones.
  •  
2.
  • Michalak, Monika, et al. (författare)
  • Wear Behavior Analysis of Al2O3 Coatings Manufactured by APS and HVOF Spraying Processes Using Powder and Suspension Feedstocks
  • 2021
  • Ingår i: Coatings. - : MDPI. - 2079-6412. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermally sprayed ceramic coatings are applied for the protection of surfaces that are exposed mainly to wear, high temperatures, and corrosion. In recent years, great interest has been garnered by spray processes with submicrometric and nanometric feedstock materials, due to the refinement of the structure and improved coating properties. This paper compares the microstructure and tribological properties of alumina coatings sprayed using conventional atmospheric plasma spraying (APS), and various methods that use finely grained suspension feedstocks, namely, suspension plasma spraying (SPS) and suspension high-velocity oxy-fuel spraying (S-HVOF). Furthermore, the suspension plasma-sprayed Al2O3 coatings have been deposited with radial (SPS) and axial (A-SPS) feedstock injection. The results showed that all suspension-based coatings demonstrated much better wear resistance than the powder-sprayed ones. S-HVOF and axial suspension plasma spraying (A-SPS) allowed for the deposition of the most dense and homogeneous coatings. Dense-structured coatings with low porosity (4 vol.%) and good cohesion to the metallic substrate, containing a high content of alpha-Al2O3 phase (56 vol.%) and a very low wear rate (0.2 +/- 0.04 mm(3) x 10(-6)/(N center dot m)), were produced with the S-HVOF method. The wear mechanism of ceramic coatings included the adhesive wear mode supported by the fatigue-induced material delamination. Moreover, the presence of wear debris and tribofilm was confirmed. Finally, the coefficient of friction for the coatings was in the range between 0.44 and 0.68, with the highest values being recorded for APS sprayed coatings.
  •  
3.
  • Selbmann, Alex, et al. (författare)
  • Process qualification, additive manufacturing, and postprocessing of a hydrogen peroxide/kerosene 6 kN aerospike breadboard engine
  • 2024
  • Ingår i: Journal of laser applications. - : Laser Institute of America. - 1042-346X .- 1938-1387. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This contribution addresses the complete process chain of an annular aerospike breadboard engine fabricated by laser powder bed fusion using the nickel-based superalloy Inconel® 718. In order to qualify the material and process for this high-temperature application, an extensive material characterization campaign including density and roughness measurements, as well as tensile tests at room temperature, 700, and 900 °C, was conducted. In addition, various geometric features such as triangles, ellipses, and circular shapes were generated to determine the maximum unsupported overhang angle and geometrical accuracy. The results were taken into account in the design maturation of the manifold and the cooling channels of the aerospike breadboard engine. Postprocessing included heat treatment to increase mechanical properties, milling, turning, and eroding of interfaces to fulfill the geometrical tolerances, thermal barrier coating of thermally stressed surfaces for better protection of thermal loads, and laser welding of spike and shroud for the final assembly as well as quality assurance. This contribution goes beyond small density cubes and tensile samples and offers details on the iterations necessary for the successful printing of large complex shaped functional parts. The scientific question is how to verify the additive manufacturing process through tensile testing, simulation, and design iterations for complex geometries and reduce the number of failed prints.
  •  
4.
  • Vardelle, Armelle, et al. (författare)
  • Erratum to The 2016 Thermal Spray Roadmap
  • 2017
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 26:5, s. 985-986
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Vardelle, Armelle, et al. (författare)
  • The 2016 Thermal Spray Roadmap
  • 2016
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 25:8, s. 1376-1440
  • Tidskriftsartikel (refereegranskat)abstract
    • Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications. © 2016, ASM International.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy