SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tomelleri Enrico) "

Sökning: WFRF:(Tomelleri Enrico)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beer, Christian, et al. (författare)
  • Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land-Atmosphere CO2 Fluxes
  • 2014
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 27:13, s. 4815-4834
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal variability of meteorological variables and extreme weather events is projected to increase in many regions of the world during the next century. Artificial experiments using process-oriented terrestrial ecosystem models make it possible to isolate effects of temporal variability from effects of gradual climate change on terrestrial ecosystem functions and the system state. Such factorial experiments require two long-term climate datasets: 1) a control dataset that represents observed and projected climate and 2) a dataset with the same long-term mean as the control dataset but with altered short-term variability. Using a bias correction method, various climate datasets spanning different periods are harmonized and then combined with the control dataset with consistent time series for Europe during 1901-2100. Then, parameters of a distribution transformation function are estimated for individual meteorological variables to derive the second climate dataset, which has similar long-term means but reduced temporal variability. The transformation conserves the number of rainy days within a month and the shape of the daily meteorological data distributions, which is important to ensure that, for example, drought duration does not modify the suitability of localized vegetation type to precipitation regimes. The median absolute difference between daily data of both datasets is 5% to 20%. On average, decadal extreme values are reduced by 2% to 35%. Driving a terrestrial ecosystem model with both climate datasets shows a general higher gross primary production under reduced temporal climate variability. This effect of climate variability on productivity demonstrates the potential of the climate datasets for studying various effects of temporal variability on ecosystem state and functions over large domains.
  •  
2.
  • Beer, Christian, et al. (författare)
  • Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 329:5993, s. 834-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.
  •  
3.
  • Ganeva, Dessislava, et al. (författare)
  • In-situ start and end of growing season dates of major European crop types from France and Bulgaria at a field level
  • 2023
  • Ingår i: Data in Brief. - 2352-3409. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop phenology data offer crucial information for crop yield estimation, agricultural management, and assessment of agroecosystems. Such information becomes more important in the context of increasing year-to-year climatic variability. The dataset provides in-situ crop phenology data (first leaves emergence and harvest date) of major European crops (wheat, corn, sunflower, rapeseed) from seventeen field study sites in Bulgaria and two in France. Additional information such as the sowing date, area of each site, coordinates, method and equipment used for phenophase data estimation, and photos of the France sites are also provided. The georeferenced ground-truth dataset provides a solid base for a better understanding of crop growth and can be used to validate the retrieval of phenological stages from remote sensing data.
  •  
4.
  • Graf, Alexander, et al. (författare)
  • Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects
  • 2023
  • Ingår i: Communications Earth and Environment. - 2662-4435. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.
  •  
5.
  • Kooistra, Lammert, et al. (författare)
  • Reviews and syntheses : Remotely sensed optical time series for monitoring vegetation productivity
  • 2024
  • Ingår i: Biogeosciences. - 1726-4170. ; 21:2, s. 473-511
  • Forskningsöversikt (refereegranskat)abstract
    • Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.
  •  
6.
  • Migliavacca, Mirco, et al. (författare)
  • Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites
  • 2011
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 17:1, s. 390-409
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we examined ecosystem respiration (R-ECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of R-ECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of R-ECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of R-ECO. The maximum seasonal leaf area index (LAI(MAX)) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature T-ref=15 degrees C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P < 0.001, n=104) even within each PFT. Besides LAI(MAX), we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (N-depo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAI(MAX)) which performed well in predicting the spatio-temporal variability of R-ECO, explaining > 70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy