SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toom D.) "

Sökning: WFRF:(Toom D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Modini, R. L., et al. (författare)
  • Primary marine aerosol-cloud interactions off the coast of California
  • 2015
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 120:9, s. 4282-4303
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary marine aerosol (PMA)-cloud interactions off the coast of California were investigated using observations of marine aerosol, cloud condensation nuclei (CCN), and stratocumulus clouds during the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies. Based on recently reported measurements of PMA size distributions, a constrained lognormal-mode-fitting procedure was devised to isolate PMA number size distributions from total aerosol size distributions and applied to E-PEACE measurements. During the 12 day E-PEACE cruise on the R/V Point Sur, PMA typically contributed less than 15% of total particle concentrations. PMA number concentrations averaged 12 cm(-3) during a relatively calmer period (average wind speed 12m/s(1)) lasting 8 days, and 71cm(-3) during a period of higher wind speeds (average 16m/s(1)) lasting 5 days. On average, PMA contributed less than 10% of total CCN at supersaturations up to 0.9% during the calmer period; however, during the higher wind speed period, PMA comprised 5-63% of CCN (average 16-28%) at supersaturations less than 0.3%. Sea salt was measured directly in the dried residuals of cloud droplets during the SOLEDAD study. The mass fractions of sea salt in the residuals averaged 12 to 24% during three cloud events. Comparing the marine stratocumulus clouds sampled in the two campaigns, measured peak supersaturations were 0.20.04% during E-PEACE and 0.05-0.1% during SOLEDAD. The available measurements show that cloud droplet number concentrations increased with >100 nm particles in E-PEACE but decreased in the three SOLEDAD cloud events.
  •  
2.
  • Zhao, R., et al. (författare)
  • Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:19, s. 6962-6969
  • Tidskriftsartikel (refereegranskat)abstract
    • Although isocyanic acid (HNCO) may cause a variety of health issues via protein carbamylation and has been proposed as a key compound in smoke-related health issues, our understanding of the atmospheric sources and fate of this toxic compound is currently incomplete. To address these issues, a field study was conducted at Mount Soledad, La Jolla, CA, to investigate partitioning of HNCO to clouds and fogs using an Acetate Chemical Ionization Mass Spectrometer coupled to a ground-based counterflow virtual impactor. The first field evidence of cloud partitioning of HNCO is presented, demonstrating that HNCO is dissolved in cloudwater more efficiently than expected based on the effective Henry's law solubility. The measurements also indicate evidence for a secondary, photochemical source of HNCO in ambient air at this site.
  •  
3.
  • Bosmans, Laura A., et al. (författare)
  • Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages’ transition into a pro-inflammatory state
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:5, s. 1146-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. Method and Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe−/− background were generated (CD40wt and CD40mac−/− , respect-Results ively). Atherosclerotic lesion size, as well as plaque macrophage content, was reduced in CD40mac−/− compared to CD40wt mice, and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac−/− atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses. Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206+CD209b− macrophages in the atherosclerotic aorta of CD40mac−/− compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages of CD40mac−/− mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1, and Tns1). Conclusions We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
  •  
4.
  • Sanchez, K. J., et al. (författare)
  • Meteorological and aerosol effects on marine cloud microphysical properties
  • 2016
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 121:8, s. 4142-4161
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 mu m). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy