SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torsvik T. H.) "

Sökning: WFRF:(Torsvik T. H.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alme, J., et al. (författare)
  • RCU2-The ALICE TPC readout electronics consolidation for Run2
  • 2013
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the solution for optimization of the ALICE TPC readout for running at full energy in the Run2 period after 2014. For the data taking with heavy ion beams an event readout rate of 400 Hz with a low dead time is envisaged for the ALICE central barrel detectors during these three years. A new component, the Readout Control Unit 2 (RCU2), is being designed to increase the present readout rate by a factor of up to 2.6. The immunity to radiation induced errors will also be significantly improved by the new design.
  •  
3.
  • Halbach, Laura, et al. (författare)
  • Tidewater Glaciers and Bedrock Characteristics Control the Phytoplankton Growth Environment in a Fjord in the Arctic
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Meltwater discharge from tidewater glaciers impacts the adjacent marine environment. Due to the global warming, tidewater glaciers are retreating and will eventually terminate on land. Yet, the mechanisms through which meltwater runoff and subglacial discharge from tidewater glaciers influence marine primary production remain poorly understood, as data in close proximity to glacier fronts are scarce. Here, we show that subglacial meltwater discharge and bedrock characteristics of the catchments control the phytoplankton growth environment inside the fjord, based on data collected in close proximity to tidewater glacier fronts in Kongsfjorden, Svalbard from 26 to 31 July 2017. In the southern part of the inner fjord, glacial meltwater from subglacial discharge was rich in fine sediments derived from erosion of Devonian Old Red Sandstone and carbonate rock deposits, limiting light availability for phytoplankton (0.6 mg m(-3) Chl a on average, range 0.2-1.9 mg m(-3)). In contrast, coarser sediments derived from gneiss and granite bedrock and lower subglacial discharge rates were associated with more favourable light conditions facilitating a local phytoplankton bloom in the northern part of the inner fjord with mean Chl a concentration of 2.8 mg m(-3) (range 1.3-7.4 mg m(-3)). In the northern part, glacier meltwater was a direct source of silicic acid through weathering of the silica-rich gneiss and granite bedrock. Upwelling of the subglacial freshwater discharge plume at the Kronebreen glacier front in the southern part entrained large volumes of ambient, nutrient-rich bottom waters which led to elevated surface concentrations of ammonium, nitrate, and partly silicic acid. Total dissolved inorganic nitrogen transported to the surface with the upwelling of the subglacial discharge plume has a significant potential to enhance summer primary production in Kongsfjorden, with ammonium released from the seafloor being of particular importance. The transition from tidewater to land-terminating glaciers may, thus, reduce the input of nutrients to the surface layer with negative consequences for summer productivity.
  •  
4.
  • Pesonen, L. J., et al. (författare)
  • Catalogue of palaeomagnetic directions and poles from Fennoscandia : Archaean to tertiary
  • 1991
  • Ingår i: Tectonophysics. - 0040-1951 .- 1879-3266. ; 195:2-4, s. 151-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeomagnetic data from Fennoscandia ranging from the Archaean to the Tertiary have been compiled into a catalogue. The data are presented in table format, listing Precambrian data according to tectonomagmatic blocks and Late Precambrian-Phanerozoic data according to geological periods. Each pole is graded with the modified Briden-Duff classification scheme. The catalogue (complete to the end of 1988) contains 350 entries from 31 tectonomagmatic blocks and/or geological periods. Normal and reversed polarity data are listed separately to allow polarity asymmetries to be studied. Each entry also has an indexed abstract summarizing relevant information, such as the age of the rock, the age of the natural remanent magnetization and the basis for the assigned reliability grade. All the data are stored in the palaeomagnetic data bank, which will be updated annually with new data. The catalogue is the basic source of data for the microcomputer-based palaeomagnetic database for Fennoscandia now being compiled.
  •  
5.
  • Pesonen, L. J., et al. (författare)
  • Crustal evolution of Fennoscandia : palaeomagnetic constraints
  • 1989
  • Ingår i: Tectonophysics. - : Elsevier BV. - 0040-1951 .- 1879-3266. ; 162:1-2, s. 27-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeomagnetic poles from Fennoscandia, ranging in age from Archaean to Tertiary, are compiled and graded using a modified Briden-Duff classification scale. An new "filtering" technique is applied to select only the most reliable poles for analysis. The filtering takes into account the following information: 1. (1) source block of rock unit,2. (2) age of rock,3. (3) age of magnetization component,4. (4) scatter of palaeomagnetic directions,5. (5) information from multicomponent analysis of natural remanent magnetization (NRM),6. (6) whether the pole considered belongs to a cluster or subcluster of poles,7. (7) magnetic polarity and8. (8) the author's original assignment of results.Data are still insufficient for the drawing of separate Apparent Polar Wander Paths (APWP) for different blocks or cratons of Fennoscandia. Treating Fennoscandia as a single plate, a new APWP from Archaean to Permian is constructed. From the five previously drawn APWP loops (or "hairpins"), only one, the Jatulian loop (2200-2000 Ma), disappears in filtering. The loops during 1925-1700 Ma and during 1100-800 Ma ago are linked to Svecofennian and Sveconorwegian orogenies, respectively. Palaeomagnetic data support the concept that these orogenies took place episodically; three distinct orogenic pulses (early, middle and late) can be distinguished in the cluster plots of palaeopoles. The drift history of Fennoscandia from Archaean to Permian is presented. During most of geological history, Fennoscandia has occupied low to moderate latitudes and undergone considerable latitudinal shifts and rotations. The Svecofennian and Sveconorwegian orogenies have different kinematic characteristics. During the Svecofennian orogeny, Fennoscandia drifted slowly while rotating a large amount in an anticlockwise sense. During the Sveconorwegian orogeny, it drifted rapidly and rotated first clockwise and then anticlockwise. The most striking feature in the drift velocity curves is, however, the pronounced maxima in the latitudinal drift and rotation rates (˜ 9 cm/yr and ˜ 0.8°/Ma, respectively) during the late Subjotnian-Jotnian anorogenic magmatism and rifting phase (˜1450-1250 Ma ago), possibly reflecting the passage of Fennoscandia across a thermal upwelling (hotspot) at equatorial latitudes. The use of palaeomagnetism in delineating and dating movements between blocks is demonstrated with three examples from the POLAR Profile area, the northernmost section of the European Geotraverse.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy