SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tran Lundmark Karin) "

Sökning: WFRF:(Tran Lundmark Karin)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahan, Diana, et al. (författare)
  • MicroRNA-Dependent Control of Serotonin-Induced Pulmonary Arterial Contraction
  • 2017
  • Ingår i: Journal of Vascular Research. - : S. Karger AG. - 1018-1172 .- 1423-0135. ; 54:4, s. 246-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. Methods: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. Results: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. Conclusion: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.
  •  
2.
  • Cai, Zongye, et al. (författare)
  • Kynurenine metabolites predict survival in pulmonary arterial hypertension : A role for IL-6/IL-6Rα
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH. Blood sampling of PAH patients was performed at the time of diagnosis, six months and one year after PAH therapy. KP activation with lower tryptophan, higher kynurenine (Kyn), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KA), and anthranilic acid was observed in treatment-naïve PAH patients compared with controls. A similar KP-metabolite profile was observed in monocrotaline, but not Sugen/hypoxia-induced PAH. Human lung primary cells (microvascular endothelial cells, pulmonary artery smooth muscle cells, and fibroblasts) were exposed to different cytokines in vitro. Following exposure to interleukin-6 (IL-6)/IL-6 receptor α (IL-6Rα) complex, all cell types exhibit a similar KP-metabolite profile as observed in PAH patients. PAH therapy partially normalized this profile in survivors after one year. Increased KP-metabolites correlated with higher pulmonary vascular resistance, shorter six-minute walking distance, and worse functional class. High levels of Kyn, 3-HK, QA, and KA measured at the latest time-point were associated with worse long-term survival. KP-metabolism was activated in treatment-naïve PAH patients, likely mediated through IL-6/IL-6Rα signaling. KP-metabolites predict response to PAH therapy and survival of PAH patients.
  •  
3.
  • Chang, Ya-Ting, et al. (författare)
  • Antenatal imatinib treatment reduces pulmonary vascular remodeling in a rat model of congenital diaphragmatic hernia
  • 2012
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504. ; 302:11, s. L1159-L1166
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathophysiology of congenital diaphragmatic hernia (CDH) is constituted by pulmonary hypoplasia and pulmonary hypertension (PH). We previously reported successful treatment with imatinib of a patient with CDH. This study examines the effect of antenatal imatinib administration on the pulmonary vasculature in a rat model of CDH. Pregnant rats were given nitrofen to induce CDH. Controls were given olive oil. Half of the CDH fetuses and half of the controls were treated with imatinib antenatally E17-E21, rendering four groups: Control, Control+Imatinib, CDH, and CDH+Imatinib. Lung sections were obtained for morphometry and immunohistochemistry, and protein was purified for Western blot. Effects of nitrofen and imatinib on Ki-67, caspase-3, PDGF-B, and PDGF receptors were analyzed. Imatinib significantly reduced medial wall thickness in pulmonary arteries of rats with CDH. It also normalized lumen area and reduced the proportion of fully muscularized arteries. Imatinib also caused medial thinning in the control group. Cell proliferation was increased in CDH, and this proliferation was significantly reduced by imatinib. PDGF-B and PDGFR-beta were upregulated in CDH, and imatinib treatment resulted in a downregulation. PDGFR-alpha remained unchanged in CDH but was significantly downregulated by imatinib. Antenatal imatinib treatment reduces development of medial wall thickness and restores lumen area in pulmonary arteries in nitrofen-induced CDH. The mechanism is reduced cell proliferation. Imatinib is an interesting candidate for antenatal therapy for PH in CDH, but potential side effects need to be investigated and more specific targeting of PDGF signaling is needed.
  •  
4.
  • Chang, Ya-Ting, et al. (författare)
  • Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension
  • 2015
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 107:1, s. 20-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. Methods and results In normoxia, Hspg2(Delta 3/Delta 3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Delta 3/Delta 3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Delta 3/Delta 3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Delta 3/Delta 3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Delta 3/Delta 3) compared with wild type. Conclusions Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
  •  
5.
  • Gotha, Lara, et al. (författare)
  • Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury
  • 2014
  • Ingår i: American Journal of Physiology: Heart and Circulatory Physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 307:3, s. 337-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Delta 3/Delta 3) (M Delta 3/Delta 3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from M Delta 3/Delta 3 and wild-type mice. Proliferation of M Delta 3/Delta 3 SMC was 1.5x greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In M Delta 3/Delta 3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with M Delta 3/Delta 3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the M Delta 3/Delta 3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.
  •  
6.
  • Jeremiasen, Ida, et al. (författare)
  • Pulmonary Vasodilator Therapy in Children with Single Ventricle Physiology : Effects on Saturation and Pulmonary Arterial Pressure
  • 2020
  • Ingår i: Pediatric Cardiology. - : Springer Science and Business Media LLC. - 0172-0643 .- 1432-1971. ; 41:8, s. 1651-1659
  • Tidskriftsartikel (refereegranskat)abstract
    • In children with single ventricle physiology, increased pulmonary vascular resistance may impede surgical progression or result in failing single ventricle physiology. The use of pulmonary vasodilators has been suggested as a potential therapy. However, knowledge on indication, dosage, and effect is limited. A retrospective case notes review of all (n = 36) children with single ventricle physiology, treated with pulmonary vasodilators by the UK Pulmonary Hypertension Service for Children 2004–2017. Therapy was initiated in Stage 1 (n = 12), Glenn (n = 8), or TCPC (n = 16). Treatment indications were high mean pulmonary arterial pressure, cyanosis, reduced exercise tolerance, protein-losing enteropathy, ascites, or plastic bronchitis. Average dose of sildenafil was 2.0 mg/kg/day and bosentan was 3.3 mg/kg/day. 56% had combination therapy. Therapy was associated with a reduction of the mean pulmonary arterial pressure from 19 to 14 mmHg (n = 17, p < 0.01). Initial therapy with one or two vasodilators was associated with an increase in the mean saturation from 80 to 85%, (n = 16, p < 0.01). Adding a second vasodilator did not give significant additional effect. 5 of 12 patients progressed from Stage 1 to Glenn, Kawashima, or TCPC, and 2 of 8 from Glenn to TCPC during a mean follow-up time of 4.7 years (0–12.8). Bosentan was discontinued in 57% and sildenafil in 14% of treated patients and saturations remained stable. Pulmonary vasodilator therapy was well tolerated and associated with improvements in saturation and mean pulmonary arterial pressure in children with single ventricle physiology. It appears safe to discontinue when no clear benefit is observed.
  •  
7.
  • Tran-Lundmark, Karin, et al. (författare)
  • Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation.
  • 2008
  • Ingår i: Circulation research. - 1524-4571. ; 103:1, s. 43-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2(Delta3/Delta3)). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2(Delta3/Delta3) mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2(Delta3/Delta3) smooth muscle cells was reduced. In vivo, at 20 minutes influx of human (125)I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2(Delta3/Delta3) mice compared to ApoE0 mice. However, at 72 hours accumulation of (125)I-LDL was similar in ApoE0/Hspg2(Delta3/Delta3) and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2(Delta3/Delta3) mice showed decreased staining for apoB and increased smooth muscle alpha-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
  •  
8.
  • Westoo, Christian, et al. (författare)
  • Distinct types of plexiform lesions identified by synchrotron-based phase-contrast micro-CT
  • 2021
  • Ingår i: American Journal of Physiology - Lung Cellular and Molecular Physiology. - 1040-0605. ; 321:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1–2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1–3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.
  •  
9.
  • Bhutada, Sumit, et al. (författare)
  • Identification of protein biomarkers associated with congenital diaphragmatic hernia in human amniotic fluid
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital diaphragmatic hernia (CDH) is a severe birth defect frequently associated with pulmonary hypoplasia, pulmonary hypertension, and heart failure. Since amniotic fluid comprises proteins of both fetal and maternal origin, its analysis could provide insights on mechanisms underlying CDH and provide biomarkers for early diagnosis, severity of pulmonary changes and treatment response. The study objective was to identify proteomic changes in amniotic fluid consistently associated with CDH. Amniotic fluid was obtained at term (37–39 weeks) from women with normal pregnancies (n = 5) or carrying fetuses with CDH (n = 5). After immuno-depletion of the highest abundance proteins, off-line fractionation and high-resolution tandem mass spectrometry were performed and quantitative differences between the proteomes of the groups were determined. Of 1036 proteins identified, 218 were differentially abundant. Bioinformatics analysis showed significant changes in GP6 signaling, in the MSP–RON signaling in macrophages pathway and in networks associated with cardiovascular system development and function, connective tissue disorders and dermatological conditions. Differences in selected proteins, namely pulmonary surfactant protein B, osteopontin, kallikrein 5 and galectin-3 were validated by orthogonal testing using ELISA in larger cohorts and showed statistically significant differences aiding in the diagnosis and prediction of CDH. The findings provide potential tools for clinical management of CDH.
  •  
10.
  •  
11.
  • Chang, Ya-Ting, et al. (författare)
  • Versican accumulates in vascular lesions in pulmonary arterial hypertension
  • 2016
  • Ingår i: PULMONARY CIRCULATION. - : Wiley. - 2045-8932 .- 2045-8940. ; 6:3, s. 347-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [S-35] sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.
  •  
12.
  •  
13.
  • Doughty, Elizabeth S., et al. (författare)
  • Long-Term Effect of TBX4 Germline Mutation on Pulmonary Clinico-Histopathologic Phenotype
  • Ingår i: Pediatric and Developmental Pathology. - 1093-5266.
  • Tidskriftsartikel (refereegranskat)abstract
    • Tbx4 protein, expressed in mesenchyme of the developing lung, contributes to airway branching and distal lung growth. An association between pediatric onset of pulmonary arterial hypertension (PAH) and genetic variations coding for the T-box transcription factor 4 gene (TBX4) has been increasingly recognized. Tbx4-related PAH onset has a bimodal age distribution, including severe to lethal PAH in newborns and later onset PAH. We present an autopsy study of a 24-year-old male with a heterozygous TBX4 variant, who developed pulmonary arterial hypertension at age 12 years. This unique case highlights the complex pulmonary histopathology leading to lethal cardiopulmonary failure in the setting of TBX4 mutation.
  •  
14.
  • Dreier, Till, et al. (författare)
  • Radiopaque dyes allow vessel imaging in lung tissue using laboratory phase contrast micro-CT
  • 2022
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. ; 12242
  • Konferensbidrag (refereegranskat)abstract
    • Phase contrast micro-CT is a powerful technique allowing imaging of soft tissue at synchrotrons or using lab- oratory sources. The use of contrast agents is a useful approach when imaging vascular structures. However, common x-ray contrast agents typically rely on heavy metals to increase absorption, which may affect the phase contrast and cause artifacts in the reconstructed volumes. Thus, utilizing an agent with lower attenuation similar to soft tissue is clearly advantageous. Here, we evaluated different colored radiopaque solutions (tissue marking dyes) which had been injected into the vascular system of bovine lung samples, prior to embedding in paraffin. Scans were performed using a micro-focus x-tube calibrated to 10 µm spot size at 70 kV and a photon counting detector with a silicon sensor and 75 µm pixels. The resulting volumes have a voxel size of (25 µm)3, limited by the size of the samples, but sufficient to resolve the vascular system. Experiments confirmed that sufficient perfusion of the vessels with the dyes could be achieved, and the different dyes could be clearly discerned in the reconstructed volumes without causing artifacts allowing to clearly identify features in the soft tissue. Further, the findings were confirmed by histology.Keywords:
  •  
15.
  • Hansmann, Georg, et al. (författare)
  • 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT
  • 2019
  • Ingår i: The Journal of Heart and Lung Transplantation. - : Elsevier BV. - 1053-2498. ; 38:9, s. 879-901
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019 The European Pediatric Pulmonary Vascular Disease Network is a registered, non-profit organization that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of pediatric pulmonary hypertensive vascular disease, including pulmonary hypertension (PH) associated with bronchopulmonary dysplasia, PH associated with congenital heart disease (CHD), persistent PH of the newborn, and related cardiac dysfunction. The executive writing group members conducted searches of the PubMed/MEDLINE bibliographic database (1990–2018) and held face-to-face and web-based meetings. Ten section task forces voted on the updated recommendations, based on the 2016 executive summary. Clinical trials, meta-analyses, guidelines, and other articles that include pediatric data were searched using the term “pulmonary hypertension” and other keywords. Class of recommendation (COR) and level of evidence (LOE) were assigned based on European Society of Cardiology/American Heart Association definitions and on pediatric data only, or on adult studies that included >10% children or studies that enrolled adults with CHD. New definitions by the World Symposium on Pulmonary Hypertension 2018 were included. We generated 10 tables with graded recommendations (COR/LOE). The topics include diagnosis/monitoring, genetics/biomarkers, cardiac catheterization, echocardiography, cardiac magnetic resonance/chest computed tomography, associated forms of PH, intensive care unit/lung transplantation, and treatment of pediatric PH. For the first time, a set of specific recommendations on the management of PH in middle- and low-income regions was developed. Taken together, these executive, up-to-date guidelines provide a specific, comprehensive, detailed but practical framework for the optimal clinical care of children and young adults with PH.
  •  
16.
  • Hopper, Rachel K, et al. (författare)
  • International practice heterogeneity in pre-transplant management of pulmonary hypertension related to pediatric left heart disease
  • 2023
  • Ingår i: Pediatric Transplantation. - : Wiley. - 1399-3046 .- 1397-3142. ; 27:2, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Elevated pulmonary vascular resistance (PVR) in the setting of left heart failure may contribute to poor outcomes after pediatric heart transplant (HTx), but peri-transplant management is variable.METHODS: We sought to characterize international practice by surveying physicians at pediatric HTx centers.RESULTS: We received 49 complete responses from 39 centers in 16 countries. Most respondents are pediatric cardiologists (90%), practice at centers offering heart (86%) and lung (55%) transplant, and perform pre-HTx acute vasoreactivity testing (AVT, 88%) in patients with elevated PVR. Half (51%) reported defining a PVR cutoff for HTx eligibility as ≤6 WU m 2 (56%) post-AVT (84%). The highest post-AVT PVR ever accepted for HTx ranged from 3-14.4 (median 6) WU m 2 . To treat elevated pre-transplant PVR, phosphodiesterase type 5 inhibitors are most common (65%) followed by oxygen (31%), nitric oxide (14%), endothelin receptor antagonists (11%), and prostacyclins (6%). Nearly a third (31%) do not routinely use pulmonary vasodilators without implantation of a left ventricular assist device (LVAD). Case scenarios highlight treatment variability: in a restrictive cardiomyopathy scenario, HTx listing with post-transplant vasodilator therapy was favored, whereas in a Shone's complex patient with fixed PVR, LVAD ± pulmonary vasodilators followed by repeat catheterization was most common. Management of dilated cardiomyopathy with reactive PVR was variable. Most continue vasodilator therapy until HTx (16%), PVR normalizes (16%) or ≤6 months. CONCLUSIONS: Management of elevated PVR in children awaiting HTx is heterogenous. Evidence-based guidelines are needed to allow for longitudinal determination of optimal outcomes and standardized care.
  •  
17.
  • Jeremiasen, Ida, et al. (författare)
  • Outpatient prescription of pulmonary vasodilator therapy to preterm children with bronchopulmonary dysplasia
  • 2023
  • Ingår i: Acta Paediatrica. - : John Wiley & Sons. - 0803-5253 .- 1651-2227. ; 112:3, s. 403-416
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The use of pulmonary vasodilator therapy in children born preterm is largely unknown. Our aim was to map prescription patterns in children with bronchopulmonary dysplasia in Sweden.Methods: This was a descriptive national registry-based study of children <7 years who had been prescribed a pulmonary vasodilator during 2007–2017, were born preterm and classified as having bronchopulmonary dysplasia. Information on prescriptions, patient characteristics and comorbidities were retrieved from the Swedish Prescribed Drug Register and linked to other national registers.Results: The study included 74 children, 54 (73%) born at 22–27 weeks' gestation and 20 (27%) at 28–36 weeks. Single therapy was most common, n = 64 (86.5%), and sildenafil was prescribed most frequently, n = 69 (93%). Bosentan, iloprost, macitentan and/or treprostinil were used mainly for combination therapies, n = 10 (13.5%). Patent ductus arteriosus or atrial septal defect were present in 29 (39%) and 25 (34%) children, respectively, and 20 (69%) versus 3 (12%) underwent closure. Cardiac catheterisation was performed in 19 (26%) patients. Median duration of therapy was 4.6 (1.9-6.8, 95% CI) months. Mortality was 9%.Conclusion: Preterm children with bronchopulmonary dysplasia were prescribed pulmonary vasodilators, often without prior catheterisation. Sildenafil was most commonly used. Diagnostic tools, effects, and drug safety need further evaluation.
  •  
18.
  • Jeremiasen, Ida, et al. (författare)
  • Vasodilator therapy for pulmonary hypertension in children : a national study of patient characteristics and current treatment strategies
  • 2021
  • Ingår i: Pulmonary Circulation. - : John Wiley & Sons. - 2045-8932 .- 2045-8940. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary vasodilator therapy is still often an off-label treatment for pulmonary hypertension in children. The aim of this nationwide register-based study was to assess patient characteristics and strategies for pulmonary vasodilator therapy in young Swedish children. Prescription information for all children below seven years of age at treatment initiation, between 2007 and 2017, was retrieved from the National Prescribed Drug Register, and medical information was obtained by linkage to other registers. All patients were categorized according to the WHO classification of pulmonary hypertension. In total, 233 patients had been prescribed pulmonary vasodilators. The treatment was initiated before one year of age in 61% (N = 143). Sildenafil was most common (N = 224 patients), followed by bosentan (N = 29), iloprost (N = 14), macitentan (N = 4), treprostinil (N = 2) and riociguat (N = 2). Over the study period, the prescription rate for sildenafil tripled. Monotherapy was most common, 87% (N = 203), while 13% (N = 20) had combination therapy. Bronchopulmonary dysplasia (N = 82, 35%) and/or congenital heart defects (N = 156, 67%) were the most common associated conditions. Eight percent (N = 18) of the patients had Down syndrome. Cardiac catheterization had been performed in 39% (N = 91). Overall mortality was 13% (N = 30) during the study period. This study provides an unbiased overview of national outpatient use of pulmonary vasodilator therapy in young children. Few cases of idiopathic pulmonary arterial hypertension were found, but a large proportion of pulmonary hypertension associated with congenital heart defects or bronchopulmonary dysplasia. Despite treatment, mortality was high, and additional pediatric studies are needed for a better understanding of underlying pathologies and evidence of treatment effects.
  •  
19.
  •  
20.
  • Mead, Timothy J., et al. (författare)
  • Combined genetic-pharmacologic inactivation of tightly linked ADAMTS proteases in temporally specific windows uncovers distinct roles for versican proteolysis and glypican-6 in cardiac development
  • 2024
  • Ingår i: Matrix Biology. - 0945-053X. ; 131, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6−/− hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.
  •  
21.
  • Nandadasa, Sumeda, et al. (författare)
  • A new mouse mutant with cleavage-resistant versican and isoform-specific versican mutants demonstrate that proteolysis at the Glu441-Ala442 peptide bond in the V1 isoform is essential for interdigital web regression
  • 2021
  • Ingår i: Matrix Biology Plus. - : Elsevier BV. - 2590-0285. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Two inherent challenges in the mechanistic interpretation of protease-deficient phenotypes are defining the specific substrate cleavages whose reduction generates the phenotypes and determining whether the phenotypes result from loss of substrate function, substrate accumulation, or loss of a function(s) embodied in the substrate fragments. Hence, recapitulation of a protease-deficient phenotype by a cleavage-resistant substrate would stringently validate the importance of a proteolytic event and clarify the underlying mechanisms. Versican is a large proteoglycan required for development of the circulatory system and proper limb development, and is cleaved by ADAMTS proteases at the Glu441-Ala442 peptide bond located in its alternatively spliced GAGβ domain. Specific ADAMTS protease mutants have impaired interdigit web regression leading to soft tissue syndactyly that is associated with reduced versican proteolysis. Versikine, the N-terminal proteolytic fragment generated by this cleavage, restores interdigit apoptosis in ADAMTS mutant webs. Here, we report a new mouse transgene, VcanAA, with validated mutations in the GAGβ domain that specifically abolish this proteolytic event. VcanAA/AA mice have partially penetrant hindlimb soft tissue syndactyly. However, Adamts20 inactivation in VcanAA/AA mice leads to fully penetrant, more severe syndactyly affecting all limbs, suggesting that ADAMTS20 cleavage of versican at other sites or of other substrates is an additional requirement for web regression. Indeed, immunostaining with a neoepitope antibody against a cleavage site in the versican GAGα domain demonstrated reduced staining in the absence of ADAMTS20. Significantly, mice with deletion of Vcan exon 8, encoding the GAGβ domain, consistently developed soft tissue syndactyly, whereas mice unable to include exon 7, encoding the GAGα domain in Vcan transcripts, consistently had fully separated digits. These findings suggest that versican is cleaved within each GAG-bearing domain during web regression, and affirms that proteolysis in the GAGβ domain, via generation of versikine, has an essential role in interdigital web regression.
  •  
22.
  • Nandadasa, Sumeda, et al. (författare)
  • Vascular dimorphism ensured by regulated proteoglycan dynamics favors rapid umbilical artery closure at birth
  • 2020
  • Ingår i: eLife. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The umbilical artery lumen closes rapidly at birth, preventing neonatal blood loss, whereas the umbilical vein remains patent longer. Here, analysis of umbilical cords from humans and other mammals identified differential arterial-venous proteoglycan dynamics as a determinant of these contrasting vascular responses. The umbilical artery, but not the vein, has an inner layer enriched in the hydrated proteoglycan aggrecan, external to which lie contraction-primed smooth muscle cells (SMC). At birth, SMC contraction drives inner layer buckling and centripetal displacement to occlude the arterial lumen, a mechanism revealed by biomechanical observations and confirmed by computational analyses. This vascular dimorphism arises from spatially regulated proteoglycan expression and breakdown. Mice lacking aggrecan or the metalloprotease ADAMTS1, which degrades proteoglycans, demonstrate their opposing roles in umbilical vascular dimorphism, including effects on SMC differentiation. Umbilical vessel dimorphism is conserved in mammals, suggesting that differential proteoglycan dynamics and inner layer buckling were positively selected during evolution.
  •  
23.
  • Norvik, Christian, et al. (författare)
  • Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia
  • 2020
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 318:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to explore the value of synchrotron-based phase-contrast microcomputed tomography (micro-CT) in pulmonary vascular pathobiology. The microanatomy of the lung is complex with intricate branching patterns. Tissue sections are therefore difficult to interpret. Recruited intrapulmonary bronchopulmonary anastomoses (IBAs) have been described in several forms of pulmonary hypertension, including alveolar capillary dysplasia with misaligned pulmonary veins (ACD/MPV). Here, we examine paraffin-embedded tissue using this nondestructive method for high-resolution three-dimensional imaging. Blocks of healthy and ACD/MPV lung tissue were used. Pulmonary and bronchial arteries in the ACD/MPV block had been preinjected with dye. One section per block was stained, and areas of interest were marked to allow precise beam-alignment during image acquisition at the X02DA TOMCAT beamline (Swiss Light Source). A ×4 magnifying objective coupled to a 20-µm thick scintillating material and a sCMOS detector yielded the best trade-off between spatial resolution and field-of-view. A phase retrieval algorithm was applied and virtual tomographic slices and video clips of the imaged volumes were produced. Dye injections generated a distinct attenuation difference between vessels and surrounding tissue, facilitating segmentation and three-dimensional rendering. Histology and immunohistochemistry post-imaging offered complementary information. IBAs were confirmed in ACD/MPV, and the MPVs were positioned like bronchial veins/venules. We demonstrate the advantages of using synchrotron-based phase-contrast micro-CT for three-dimensional characterization of pulmonary microvascular anatomy in paraffin-embedded tissue. Vascular dye injections add additional value. We confirm intrapulmonary shunting in ACD/MPV and provide support for the hypothesis that MPVs are dilated bronchial veins/venules.
  •  
24.
  • Tannenberg, Philip, et al. (författare)
  • Extracellular retention of PDGF-B directs vascular remodeling in mouse hypoxia-induced pulmonary hypertension
  • 2018
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - : AMER PHYSIOLOGICAL SOC. - 1040-0605 .- 1522-1504. ; 314:4, s. 1593-1605
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary hypertension (PH) is a lethal condition, and current vasodilator therapy has limited effect. Antiproliferative strategies targeting platelet-derived growth factor (PDGF) receptors, such as imatinib, have generated promising results in animal studies. Imatinib is, however, a nonspecific tyrosine kinase inhibitor and has in clinical studies caused unacceptable adverse events. Further studies are needed on the role of PDGF signaling in PH. Here, mice expressing a variant of PDGF-B with no retention motif (Pdgfb(ret/ret)), resulting in defective binding to extracellular matrix, were studied. Following 4 wk of hypoxia, right ventricular systolic pressure, right ventricular hypertrophy, and vascular remodeling were examined. Pdgfb(ret/ret) mice did not develop PH, as assessed by hemodynamic parameters. Hypoxia did, however, induce vascular remodeling in Pdgfb(ret/ret) mice; but unlike the situation in controls where the remodeling led to an increased concentric muscularization of arteries, the vascular remodeling in Pdgfb(ret/ret) mice was characterized by a diffuse muscularization, in which cells expressing smooth muscle cell markers were found in the interalveolar septa detached from the normally muscularized intra-acinar vessels. Additionally, fewer NG2-positive perivascular cells were found in Pdgfb(ret/ret) lungs, and mRNA analyses showed significantly increased levels of Il6 following hypoxia, a known promigratory factor for pericytes. No differences in proliferation were detected at 4 wk. This study emphasizes the importance of extracellular matrix-growth factor interactions and adds to previous knowledge of PDGF-B in PH pathobiology. In summary, Pdgfb(ret/ret) mice have unaltered hemodynamic parameters following chronic hypoxia, possibly secondary to a disorganized vascular muscularization.
  •  
25.
  •  
26.
  • Tran Lundmark, Karin (författare)
  • Basement membrane heparan sulfate in atherogenesis and intimal hyperplasia
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiovascular disease due to atherosclerosis has become the leading cause of mortality in the world. Atherosclerosis is a progressive disease characterized by the accumulation of lipids, inflammatory cells, smooth muscle cells (SMCs) and extracellular matrix in the wall of large and medium-sized arteries. Surgical treatment of atherosclerosis cause mechanical injury to the vessel wall, which in many cases leads to restenosis and graft stenosis and recurrence of symptoms. Intimal SMC proliferation contributes to the stability of atherosclerotic plaques but it is also the main feature of intimal hyperplasia, which contributes to restenosis. It is therefore important to understand the mechanisms that control SMC growth in order to achieve a balanced healing response following interventions. This can be illustrated by the use of stents that elute anti-proliferative drugs, which has recently been associated with a higher risk of late stent thrombosis due to impaired intimal healing. Here, the role of basement membrane heparan sulfate (HS) in intimal hyperplasia and atherogenesis was investigated. Exogenously added heparin and HS are known inhibitors of SMC proliferation. However, the role of perlecan, which is the major arterial HS proteoglycan, in vascular disease was previously largely unknown. In vitro, the HS chains of perlecan lead to altered interactions between SMCs and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence SMC function in atherogenesis and vascular repair processes. The use of transgenic mice expressing an HS-deficient perlecan showed increased SMC proliferation in vitro and increased intimal hyperplasia in vivo, confirming a growth inhibitory role for perlecan HS. A possible mechanism is decreased bioavailability of heparin-binding growth factors like FGF-2 at the cell surface due to sequestering in the basement membrane. In order to study the role of HS in atherogenesis the HS-deficient mice were cross-bred with apolipoprotein E null mice, which develop atherosclerosis. The results from that study indicate that the perlecan HS chains are pro-atherogenic in mice through increased lipoprotein retention, and the ability of HS to inhibit SMC growth may contribute to lesion instability. However, when binding and retention are not limiting factors, the perlecan HS chains may be anti-atherogenic by reducing endothelial permeability to lipoproteins. To investigate how perlecan can be pharmacologically regulated we explored the effect of all-trans-retinoic acid (AtRA) on perlecan expression in SMCs. AtRA was shown to up-regulate perlecan and the inhibition of SMC proliferation by AtRA is secondary to an increased expression of perlecan and dependent upon its HS chains. In summary, the role of basement membrane HS in vascular disease is complex. It may enhance lipoprotein retention, but also decrease endothelial permeability to lipoproteins. In addition, it can reduce restenosis, but maybe also cause plaque instability. This makes perlecan a difficult but very intriguing target for pharmacological interventions.
  •  
27.
  • van der Have, Oscar, et al. (författare)
  • Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension
  • 2023
  • Ingår i: Pulmonary Circulation. - : Wiley. - 2045-8932 .- 2045-8940. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.
  •  
28.
  • van der Have, Oscar, et al. (författare)
  • Shunt-type plexiform lesions identified in the Sugen5416/Hypoxia rat model of pulmonary arterial hypertension using SPµCT
  • 2022
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently described four distinct types of plexiform lesions in human idiopathic and familial pulmonary arterial hypertension (PAH) [1], visualising the three-dimensional lesion structure using synchrotron-based phase-contrast micro-CT (SPµCT). Two types, 1 and 2, are shunt-type lesions that connect pulmonary arteries to the bronchial circulation: type 1 to the vasa vasorum, and type 2 to peribronchial vessels. Type 3 lesions are found peripherally in the lung as spherical structures abruptly terminating the distal pulmonary artery/arteriole, and type 4 are characterised by recanalization of an occluded artery/arteriole. Our observation of type 1 and type 2 lesions in PAH supports previous work which demonstrated intrapulmonary bronchopulmonary anastomoses (IBAs) connected to plexiform lesions in human PAH, suggesting that shunting of blood can occur within lesions in the setting of supra-systemic pulmonary arterial pressure [2]. Further hemodynamic studies of distinct subtypes of plexiform lesions have been hampered by the lack of available animal models with plexiform lesions representative of the full range of lesion types found in human disease. Plexiform lesions have previously been described in the Sugen5416/Hypoxia rat model of pulmonary hypertension when time until sacrifice following hypoxia is extended to 13–14 weeks. Initially plexiform lesions were identified within the lumen as well as outside the vessel as aneurysm-like lesions [3], and recently the latter type was shown to form in supernumerary arteries [4]. However, neither study observed plexiform lesions communicating with the bronchial circulation, possibly because of methodological limitations of the histological analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (25)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Tran-Lundmark, Karin (28)
van der Have, Oscar (6)
Hedin, Ulf (5)
Bech, Martin (4)
Westergren-Thorsson, ... (2)
Lengquist, Mariette (2)
visa fler...
Brunnström, Hans (2)
Naumburg, Estelle (2)
Mokso, Rajmund (2)
Bhutada, Sumit (2)
Lundberg, Johan (1)
Kjellén, Lena (1)
Dahlin, Lars B. (1)
Odermarsky, Michal (1)
Muller, Bert (1)
Wang, Ge (1)
Nilsson, Johan (1)
Borén, Jan, 1963 (1)
Swärd, Karl (1)
Rådegran, Göran (1)
D'Alto, Michele (1)
Braun, Thomas (1)
Albinsson, Sebastian (1)
Rippe, Catarina (1)
Ekman, Mari (1)
Hien Tran, Thi (1)
Eriksson, Linnea (1)
Eriksson, Inger (1)
Betsholtz, Christer (1)
Muhl, Lars (1)
Fridén, Vincent, 197 ... (1)
Johansson, Staffan (1)
Andersson Sjöland, A ... (1)
Struglics, André (1)
Larkin, Jonathan (1)
Budts, Werner (1)
Botusan, Ileana Ruxa ... (1)
Genove, Guillem (1)
Österholm, Cecilia (1)
Conner, Peter (1)
Merkus, Daphne (1)
Duncker, Dirk J. (1)
Gatzoulis, Michael A (1)
Wåhlander, Håkan (1)
Perez de Sá, Valéria (1)
Boersma, Eric (1)
Kumar, R. Krishna (1)
Dahan, Diana (1)
Kramer, Benjamin (1)
Lowry, Ashley M. (1)
visa färre...
Lärosäte
Lunds universitet (25)
Karolinska Institutet (9)
Uppsala universitet (4)
Göteborgs universitet (2)
Umeå universitet (2)
Språk
Engelska (27)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (3)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy