SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tremblay C) "

Search: WFRF:(Tremblay C)

  • Result 1-50 of 79
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • 2017
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Mishra, A, et al. (author)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Journal article (peer-reviewed)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
5.
  • Wang, Z., et al. (author)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Journal article (peer-reviewed)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
6.
  • de Jong, R. S., et al. (author)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • In: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Journal article (other academic/artistic)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
7.
  •  
8.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
14.
  • Thomas, H. J. D., et al. (author)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
15.
  • Winkler, TW, et al. (author)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
16.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
17.
  • Bousquet, J, et al. (author)
  • Severe chronic allergic (and related) diseases: a uniform approach--a MeDALL--GA2LEN--ARIA position paper
  • 2012
  • In: International archives of allergy and immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 158:3, s. 216-231
  • Journal article (peer-reviewed)abstract
    • Concepts of disease severity, activity, control and responsiveness to treatment are linked but different. Severity refers to the loss of function of the organs induced by the disease process or to the occurrence of severe acute exacerbations. Severity may vary over time and needs regular follow-up. Control is the degree to which therapy goals are currently met. These concepts have evolved over time for asthma in guidelines, task forces or consensus meetings. The aim of this paper is to generalize the approach of the uniform definition of severe asthma presented to WHO for chronic allergic and associated diseases (rhinitis, chronic rhinosinusitis, chronic urticaria and atopic dermatitis) in order to have a uniform definition of severity, control and risk, usable in most situations. It is based on the appropriate diagnosis, availability and accessibility of treatments, treatment responsiveness and associated factors such as comorbidities and risk factors. This uniform definition will allow a better definition of the phenotypes of severe allergic (and related) diseases for clinical practice, research (including epidemiology), public health purposes, education and the discovery of novel therapies.
  •  
18.
  •  
19.
  • Lu, Yingchang, et al. (author)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
20.
  •  
21.
  • Teumer, A, et al. (author)
  • Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4130-
  • Journal article (peer-reviewed)abstract
    • Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
  •  
22.
  • Björkman, Anne, 1981, et al. (author)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
23.
  •  
24.
  • Pattaro, Cristian, et al. (author)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
25.
  • Ried, Janina S., et al. (author)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
26.
  •  
27.
  • Barrio, Isabel C., et al. (author)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • In: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Journal article (peer-reviewed)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Lindén, Elin, et al. (author)
  • Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs
  • 2022
  • In: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; :11
  • Journal article (peer-reviewed)abstract
    • Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography–mass spectrometry (LC–MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations.We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence.We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Lee, Eun-Young, et al. (author)
  • Play, Learn, and Teach Outdoors—Network (PLaTO-Net) : terminology, taxonomy, and ontology
  • 2022
  • In: International Journal of Behavioral Nutrition and Physical Activity. - : BioMed Central (BMC). - 1479-5868. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: A recent dialogue in the field of play, learn, and teach outdoors (referred to as “PLaTO” hereafter) demonstrated the need for developing harmonized and consensus-based terminology, taxonomy, and ontology for PLaTO. This is important as the field evolves and diversifies in its approaches, contents, and contexts over time and in different countries, cultures, and settings. Within this paper, we report the systematic and iterative processes undertaken to achieve this objective, which has built on the creation of the global PLaTO-Network (PLaTO-Net). Methods: This project comprised of four major methodological phases. First, a systematic scoping review was conducted to identify common terms and definitions used pertaining to PLaTO. Second, based on the results of the scoping review, a draft set of key terms, taxonomy, and ontology were developed, and shared with PLaTO members, who provided feedback via four rounds of consultation. Third, PLaTO terminology, taxonomy, and ontology were then finalized based on the feedback received from 50 international PLaTO member participants who responded to ≥ 3 rounds of the consultation survey and dialogue. Finally, efforts to share and disseminate project outcomes were made through different online platforms. Results: This paper presents the final definitions and taxonomy of 31 PLaTO terms along with the PLaTO-Net ontology model. The model incorporates other relevant concepts in recognition that all the aspects of the model are interrelated and interconnected. The final terminology, taxonomy, and ontology are intended to be applicable to, and relevant for, all people encompassing various identities (e.g., age, gender, culture, ethnicity, ability). Conclusions: This project contributes to advancing PLaTO-based research and facilitating intersectoral and interdisciplinary collaboration, with the long-term goal of fostering and strengthening PLaTO’s synergistic linkages with healthy living, environmental stewardship, climate action, and planetary health agendas. Notably, PLaTO terminology, taxonomy and ontology will continue to evolve, and PLaTO-Net is committed to advancing and periodically updating harmonized knowledge and understanding in the vast and interrelated areas of PLaTO.
  •  
37.
  • Alonso-Sáez, Laura, et al. (author)
  • Role for urea in nitrification by polar marine Archaea
  • 2012
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:44, s. 17989-17994
  • Journal article (peer-reviewed)abstract
    • Despite the high abundance of Archaea in the global ocean, their metabolism and biogeochemical roles remain largely unresolved. We investigated the population dynamics and metabolic activity of Thaumarchaeota in polar environments, where these microorganisms are particularly abundant and exhibit seasonal growth. Thaumarchaeota were more abundant in deep Arctic and Antarctic waters and grew throughout the winter at surface and deeper Arctic halocline waters. However, in situ single-cell activity measurements revealed a low activity of this group in the uptake of both leucine and bicarbonate (<5% Thaumarchaeota cells active), which is inconsistent with known heterotrophic and autotrophic thaumarchaeal lifestyles. These results suggested the existence of alternative sources of carbon and energy. Our analysis of an environmental metagenome from the Arctic winter revealed that Thaumarchaeota had pathways for ammonia oxidation and, unexpectedly, an abundance of genes involved in urea transport and degradation. Quantitative PCR analysis confirmed that most polar Thaumarchaeota had the potential to oxidize ammonia, and a large fraction of them had urease genes, enabling the use of urea to fuel nitrification. Thaumarchaeota from Arctic deep waters had a higher abundance of urease genes than those near the surface suggesting genetic differences between closely related archaeal populations. In situ measurements of urea uptake and concentration in Arctic waters showed that small-sized prokaryotes incorporated the carbon from urea, and the availability of urea was often higher than that of ammonium. Therefore, the degradation of urea may be a relevant pathway for Thaumarchaeota and other microorganisms exposed to the low-energy conditions of dark polar waters.
  •  
38.
  • Aubert, S, et al. (author)
  • Global Matrix 4.0 Physical Activity Report Card Grades for Children and Adolescents: Results and Analyses From 57 Countries
  • 2022
  • In: Journal of physical activity & health. - : Human Kinetics. - 1543-5474 .- 1543-3080. ; 19:11, s. 700-728
  • Journal article (peer-reviewed)abstract
    • Background: The Global Matrix 4.0 on physical activity (PA) for children and adolescents was developed to achieve a comprehensive understanding of the global variation in children’s and adolescents’ (5–17 y) PA, related measures, and key sources of influence. The objectives of this article were (1) to summarize the findings from the Global Matrix 4.0 Report Cards, (2) to compare indicators across countries, and (3) to explore trends related to the Human Development Index and geo-cultural regions. Methods: A total of 57 Report Card teams followed a harmonized process to grade the 10 common PA indicators. An online survey was conducted to collect Report Card Leaders’ top 3 priorities for each PA indicator and their opinions on how the COVID-19 pandemic impacted child and adolescent PA indicators in their country. Results: Overall Physical Activity was the indicator with the lowest global average grade (D), while School and Community and Environment were the indicators with the highest global average grade (C+). An overview of the global situation in terms of surveillance and prevalence is provided for all 10 common PA indicators, followed by priorities and examples to support the development of strategies and policies internationally. Conclusions: The Global Matrix 4.0 represents the largest compilation of children’s and adolescents’ PA indicators to date. While variation in data sources informing the grades across countries was observed, this initiative highlighted low PA levels in children and adolescents globally. Measures to contain the COVID-19 pandemic, local/international conflicts, climate change, and economic change threaten to worsen this situation.
  •  
39.
  • Bhat, N. D. R., et al. (author)
  • Observations of Low-frequency Radio Emission from Millisecond Pulsars and Multipath Propagation in the Interstellar Medium
  • 2018
  • In: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 238:1
  • Journal article (peer-reviewed)abstract
    • Studying the gravitational-wave sky with pulsar timing arrays (PTAs) is a key science goal for the Square Kilometre Array (SKA) and its pathfinder telescopes. With current PTAs reaching sub-microsecond timing precision, making accurate measurements of interstellar propagation effects and mitigating them effectively has become increasingly important to realize PTA goals. As these effects are much stronger at longer wavelengths, low-frequency observations are most appealing for characterizing the interstellar medium (ISM) along the sight lines toward PTA pulsars. The Murchison Widefield Array (MWA) and the Engineering Development Array (EDA), which utilizes MWA technologies, present promising opportunities for undertaking such studies, particularly for PTA pulsars located in the southern sky. Such pulsars are also the prime targets for PTA efforts planned with the South African MeerKAT, and eventually with the SKA. In this paper we report on observations of two bright southern millisecond pulsars, PSR J0437-4715 and PSR J2145-0750, made with these facilities; MWA observations sampled multiple frequencies across the 80-250 MHz frequency range, while the EDA provided direct-sampled baseband data to yield a large instantaneous usable bandwidth of similar to 200 MHz. Using these exploratory observations, we investigate various aspects relating to pulsar emission and ISM properties, such as spectral evolution of the mean pulse shape, scintillation as a function of frequency, chromaticity in interstellar dispersion, and flux density spectra at low frequencies. Systematic and regular monitoring observations will help ascertain the role of low-frequency measurements in PTA experiments, while simultaneously providing a detailed characterization of the ISM toward the pulsars, which will be useful in devising optimal observing strategies for future PTA experiments.
  •  
40.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
41.
  • Kariippanon, Katharina E., et al. (author)
  • Levels and Correlates of Objectively Measured Sedentary Behavior in Young Children : SUNRISE Study Results from 19 Countries
  • 2022
  • In: Medicine & Science in Sports & Exercise. - : Lippincott, Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 54:7, s. 1123-1130
  • Journal article (peer-reviewed)abstract
    • Purpose There is a paucity of global data on sedentary behavior during early childhood. The purpose of this study was to examine how device-measured sedentary behavior in young children differed across geographically, economically, and sociodemographically diverse populations, in an international sample. Methods This multinational, cross-sectional study included data from 1071 children 3-5 yr old from 19 countries, collected between 2018 and 2020 (pre-COVID). Sedentary behavior was measured for three consecutive days using activPAL accelerometers. Sedentary time, sedentary fragmentation, and seated transport duration were calculated. Linear mixed models were used to examine the differences in sedentary behavior variables between sex, country-level income groups, urban/rural settings, and population density. Results Children spent 56% (7.4 h) of their waking time sedentary. The longest average bout duration was 81.1 +/- 45.4 min, and an average of 61.1 +/- 50.1 min center dot d(-1) was spent in seated transport. Children from upper-middle-income and high-income countries spent a greater proportion of the day sedentary, accrued more sedentary bouts, had shorter breaks between sedentary bouts, and spent significantly more time in seated transport, compared with children from low-income and lower-middle-income countries. Sex and urban/rural residential setting were not associated with any outcomes. Higher population density was associated with several higher sedentary behavior measures. Conclusions These data advance our understanding of young childrens sedentary behavior patterns globally. Country income levels and population density appear to be stronger drivers of the observed differences, than sex or rural/urban residential setting.
  •  
42.
  • Krishnan, Krishnamoorthy, et al. (author)
  • The role of wingbeat frequency and amplitude in flight power
  • 2022
  • In: Journal of the Royal Society Interface. - : The Royal Society. - 1742-5689 .- 1742-5662. ; 19:193
  • Journal article (peer-reviewed)abstract
    • Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R 2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
  •  
43.
  • Lang, Justin J., et al. (author)
  • Top 10 International Priorities for Physical Fitness Research and Surveillance Among Children and Adolescents : A Twin-Panel Delphi Study
  • 2023
  • In: Sports Medicine. - New Zealand : Adis International Ltd.. - 0112-1642 .- 1179-2035. ; 53:2, s. 549-564
  • Journal article (peer-reviewed)abstract
    • Background The measurement of physical fitness has a history that dates back nearly 200 years. Recently, there has been an increase in international research and surveillance on physical fitness creating a need for setting international priorities that could help guide future efforts. Objective This study aimed to produce a list of the top 10 international priorities for research and surveillance on physical fitness among children and adolescents. Methods Using a twin-panel Delphi method, two independent panels consisting of 46 international experts were identified (panel 1 = 28, panel 2 = 18). The panel participants were asked to list up to five priorities for research or surveillance (round 1), and then rated the items from their own panel on a 5-point Likert scale of importance (round 2). In round 3, experts were asked to rate the priorities identified by the other panel. Results There was strong between-panel agreement (panel 1: r(s) = 0.76, p < 0.01; panel 2: r(s) = 0.77, p < 0.01) in the priorities identified. The list of the final top 10 priorities included (i) "conduct longitudinal studies to assess changes in fitness and associations with health". This was followed by (ii) "use fitness surveillance to inform decision making", and (iii) "implement regular and consistent international/national fitness surveys using common measures". Conclusions The priorities identified in this study provide guidance for future international collaborations and research efforts on the physical fitness of children and adolescents over the next decade and beyond.
  •  
44.
  •  
45.
  • Papaioannou, A., et al. (author)
  • Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs
  • 2022
  • In: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:5
  • Journal article (peer-reviewed)abstract
    • ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs. © 2022 Papaioannou et al.
  •  
46.
  •  
47.
  • Wuttke, Matthias, et al. (author)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
48.
  • Abtahi, Farzad, et al. (author)
  • Optimal Design of Cost- and Energy-Efficient Scalable Passive Optical Backbone Networks
  • 2012
  • In: 2012 Asia Communications And Photonics Conference (ACP). - Washington, D.C. : OSA. - 9781467362740 ; , s. AS3D.4-
  • Conference paper (peer-reviewed)abstract
    • We propose an optimization model minimizing number of wavelengths in passive optical backbone networks and obtaining the same resource usage as in networks based on active switching while reducing both cost and power consumption.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 79
Type of publication
journal article (73)
conference paper (2)
research review (2)
Type of content
peer-reviewed (71)
other academic/artistic (6)
Author/Editor
Lind, Lars (12)
Teumer, A (11)
Ohlsson, Claes, 1965 (10)
Snieder, H. (10)
Peters, A (9)
Mahajan, A. (9)
show more...
Gudnason, V (9)
Lehtimaki, T. (9)
Gorski, M. (9)
Gieger, C (9)
Thorsteinsdottir, U (9)
Stefansson, K (9)
Nolte, IM (8)
Feitosa, MF (8)
Boerwinkle, E (8)
Hveem, K (8)
Verweij, Niek (8)
Gieger, Christian (8)
Wilson, JF (8)
Lind, L (8)
Metspalu, A (8)
van der Harst, P (8)
Hayward, C. (8)
Rudan, I. (8)
Raitakari, OT (8)
Loos, Ruth J F (8)
Loos, RJF (7)
Tremblay, C. (7)
Raitakari, Olli T (7)
Koenig, W. (7)
Nauck, M (7)
Psaty, BM (7)
Rotter, JI (7)
Martin, NG (7)
Ikram, MA (7)
Volker, U (7)
Vollenweider, P. (7)
Waldenberger, M. (7)
Campbell, H (7)
Strauch, Konstantin (7)
Laakso, M. (7)
Lindgren, CM (7)
Salomaa, V (7)
Stumvoll, M. (7)
Polašek, O. (7)
Perola, M. (7)
Vitart, V (7)
Kahonen, M (7)
van der Harst, Pim (7)
Heid, Iris M (7)
show less...
University
Karolinska Institutet (43)
University of Gothenburg (27)
Lund University (21)
Uppsala University (18)
Umeå University (14)
Högskolan Dalarna (9)
show more...
Swedish University of Agricultural Sciences (6)
Linköping University (4)
Royal Institute of Technology (2)
Stockholm University (2)
Chalmers University of Technology (2)
Linnaeus University (2)
Jönköping University (1)
Malmö University (1)
Mid Sweden University (1)
University of Skövde (1)
show less...
Language
English (79)
Research subject (UKÄ/SCB)
Natural sciences (30)
Medical and Health Sciences (27)
Engineering and Technology (2)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view