SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tremsin Anton) "

Sökning: WFRF:(Tremsin Anton)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cereser, Alberto, et al. (författare)
  • Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).
  •  
2.
  • Chuang, Yi De, et al. (författare)
  • Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS
  • 2022
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048. ; 257
  • Tidskriftsartikel (refereegranskat)abstract
    • A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary.
  •  
3.
  • Koptyug, Andrey, 1956-, et al. (författare)
  • Electron Beam Melting: from Shape Freedom to Materials Properties Control at Macro- and Microscale
  • 2021
  • Ingår i: Proceedings of the THERMEC 2020, Graz, Austria. - : Trans Tech Publications. ; , s. 755-759
  • Konferensbidrag (refereegranskat)abstract
    • Electron beam melting (EBM) is one of the constantly developing powder bed fusion (PBF) additive manufacturing technologies (AM) offering advanced control over the manufacturing process. Freedom of component shapes is one of the AM competitive advantages already used at industrial and semi- industrial scale. Development of the additive manufacturing today is targeting both widening of the available materials classes, and introducing new enabling modalities. Present research is related to the new possibilities in tailoring different material properties within additively manufactured components effectively adding “fourth dimension to the 3D-printing”. Specific examples are given in relation to the electron beam melting, but majority of the conclusions are valid for the laser-based PBF techniques as well. Through manipulating beam energy deposition it is possible to tailor quite different material properties selectively within each manufactured component, including effective material density as well as thermal, mechanical, electrical and acoustic properties. It is also possible to acquire by choice both metal-metal composite and completely alloyed material, when blends of precursor powder are used together with the beam energy manipulation.   
  •  
4.
  • Makowska, Małgorzata, et al. (författare)
  • Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere.
  • 2015
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 86:12
  • Tidskriftsartikel (refereegranskat)abstract
    • High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.
  •  
5.
  • Makowska, Malgorzata G., et al. (författare)
  • Effect of stress on NiO reduction in solid oxide fuel cells: a new application of energy-resolved neutron imaging
  • 2015
  • Ingår i: Journal of Applied Crystallography. - 1600-5767. ; 48, s. 401-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, two new phenomena linking stress field and reduction rates in anode-supported solid oxide fuel cells (SOFCs) have been demonstrated, so-called accelerated creep during reduction and reduction rate enhancement and nucleation due to stress (Frandsen et al., 2014). These complex phenomena are difficult to study and it is demonstrated here that energy-resolved neutron imaging is a feasible technique for combined mechanics-chemical composition studies of SOFC components, including commercially produced ones. Cermet anode supports, which prior to the measurements were reduced under varying conditions such as different temperatures, various times and different values of applied stress, have been measured. Thus, samples with different contents (and gradients) of Ni and NiO phases were investigated. The first Bragg edge transmission neutron measurements applied for the studies of the reduction progress in these samples were performed at two neutron beamline facilities (ISIS in the UK, Helmholtz Zentrum Berlin in Germany). The obtained results demonstrate the possibility to image and distinguish NiO and Ni phases within SOFC anode supports by energy-resolved neutron imaging and the potential of the neutron imaging method for in situ studies of reduction processes.
  •  
6.
  • Makowska, Malgorzata G., et al. (författare)
  • In situ time-of-flight neutron imaging of NiO-YSZ anode support reduction under influence of stress
  • 2016
  • Ingår i: Journal of Applied Crystallography. - 0021-8898. ; 49:5, s. 1674-1681
  • Tidskriftsartikel (refereegranskat)abstract
    • This article reports on in situ macroscopic scale imaging of NiO-YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress - a phase transition taking place in solid oxide electrochemical cells in a reducing atmosphere of a hydrogen/nitrogen mixture and at operation temperatures of up to 1073K. This process is critical for the performance and lifetime of the cells. Energy-resolved neutron imaging was applied to observe the phase transition directly with time and spatial resolution. Two different approaches are presented for using this imaging technique for the investigation of chemical and physical processes requiring controlled atmosphere and elevated temperature. The first type of measurement is based on alternating stages of short-term partial chemical reaction and longer neutron image acquisition, and the second type is a real in situ neutron imaging experiment. Results of applying energy-resolved neutron imaging with both approaches to the NiO-YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of the authors' previous research.Results of the first in situ energy-resolved neutron imaging of NiO-YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress are presented. Neutron experiments were performed at the pulsed neutron source ISIS (UK) using a time-of-flight approach.
  •  
7.
  • Sales, Morten, et al. (författare)
  • Wavelength-independent constant period spin-echo modulated small angle neutron scattering
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.
  •  
8.
  • Strobl, Markus, et al. (författare)
  • Quantitative Neutron Dark-field Imaging through Spin-Echo Interferometry.
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron dark-field imaging constitutes a seminal progress in the field of neutron imaging as it combines real space resolution capability with information provided by one of the most significant neutron scattering techniques, namely small angle scattering. The success of structural characterizations bridging the gap between macroscopic and microscopic features has been enabled by the introduction of grating interferometers so far. The induced interference pattern, a spatial beam modulation, allows for mapping of small-angle scattering signals and hence addressing microstructures beyond direct spatial resolution of the imaging system with high efficiency. However, to date the quantification in the small angle scattering regime is severely limited by the monochromatic approach. To overcome such drawback we here introduce an alternative and more flexible method of interferometric beam modulation utilizing a spin-echo technique. This novel method facilitates straightforward quantitative dark-field neutron imaging, i.e. the required quantitative microstructural characterization combined with real space image resolution. For the first time quantitative microstructural reciprocal space information from small angle neutron scattering becomes available together with macroscopic image information creating the potential to quantify several orders of magnitude in structure sizes simultaneously.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy