SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trinchero P.) "

Sökning: WFRF:(Trinchero P.)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aglietta, M, et al. (författare)
  • The cosmic ray primary composition between 10(15) and 10(16) eV from Extensive Air Showers electromagnetic and TeV muon data
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 20:6, s. 641-652
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic ray primary composition in the energy range between 10(15) and 10(16) eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a. s.l., 10(5) m(2) collecting area) and the MACRO underground detector (963 m.a.s.l., 3100 m w.e. of minimum rock overburden, 920 m(2) effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N-c) measured by EAS-TOP and the muon number (N-mu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N-mu - N-e studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Deltay = 0.7 +/- 0.4 at E-0 similar to 4 x 10(15) eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components.. and therefore breaks occurring at lower energies in the spectra of the light nuclei. (C) 2003 Elsevier B.V. All rights reserved.
  •  
2.
  • Aglietta, M, et al. (författare)
  • The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 21:3, s. 223-240
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being E-mu(th) approximate to 1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r > 100 m is directly related to the total primary energy E-0. Proton and helium ("p + He") and proton, helium and CNO ("p + He + CNO") primaries are thus selected at E-0 approximate to 80 TeV, and at E-0 similar or equal to 250 TeV, respectively. Their flux is measured: J(p+He)(80 TeV) = (1.8 +/- 0.4) x 10(-6) m(-1)-s(-1) sr(-1) TeV-1, and J(p+He+CNO)(250 TeV) = (1.1 +/- 0.3) x 10(-7) m(-2)-s(-1) sr(-1) TeV-1, their relative weights being J(p+He)(J(p+He+CNO)) over bar (250 TeV) = 0.78 +/- 0.17. By using the measurements of the proton spectrum obtained from the direct experiments and hadron flux data in the atmosphere, we obtain for the relative weights of the three components at 250 TeV: J(p) : J(He) : J(CNO) = (0.20 +/- 0.08) : (0.58 +/- 0.19) : (0.22 +/- 0.17). This corresponds to the dominance of helium over proton primaries at 100-1000 TeV, and a possible non-negligible contribution from CNO. The lateral distribution of Cherenkov light in Extensive Air Showers (EASs), which is related to the rate of energy deposit of the primary in the atmosphere, is measured for a selected proton and helium primary beam, and good agreement is found when compared with the one calculated with the CORSIKA/QGSJET simulation model. (C) 2004 Elsevier B.V. All rights reserved.
  •  
3.
  • Aprile, E., et al. (författare)
  • Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87 kg yr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16 kg yr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024 yr at 90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025 yr at 90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2.
  •  
4.
  • Aprile, E., et al. (författare)
  • Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
  •  
5.
  • Aprile, E., et al. (författare)
  • First Dark Matter Search Results from the XENON1T Experiment
  • 2017
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 119:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first dark matter search results from XENON1T, a similar to 2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 +/- 12)-kg fiducial mass and in the [5, 40] keV(nr) energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 +/- 0.25) x 10(-4) events/(kg x day x keV(ee)), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c(2), with a minimum of 7.7 x 10(-47) cm(2) for 35-GeV/c(2) WIMPs at 90% C.L.
  •  
6.
  • Aprile, E., et al. (författare)
  • First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
  •  
7.
  • Aprile, E., et al. (författare)
  • Light Dark Matter Search with Ionization Signals in XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:25
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe <1 event/(tonne day keV(ee)), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m(chi) within 3-6 GeV/c(2), DM-electron scattering for m(chi) > 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).
  •  
8.
  • Aprile, E., et al. (författare)
  • Low-mass dark matter search using ionization signals in XENON100
  • 2016
  • Ingår i: Physical Review D. - 2470-0010. ; 94:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.
  •  
9.
  • Aprile, E., et al. (författare)
  • Material radioassay and selection for the XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
  •  
10.
  • Aprile, E., et al. (författare)
  • Online Rn-222 removal by cryogenic distillation in the XENON100 experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.
  •  
11.
  • Aprile, E., et al. (författare)
  • Physics reach of the XENON1T dark matter experiment
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (kg.day.keV)(-1), mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).
  •  
12.
  • Aprile, E., et al. (författare)
  • Removing krypton from xenon by cryogenic distillation to the ppq level
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10(-15) mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10(5) with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of natKr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.
  •  
13.
  • Aprile, E., et al. (författare)
  • Results from a calibration of XENON100 using a source of dissolved radon-220
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 95:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.
  •  
14.
  • Aprile, E., et al. (författare)
  • Search for bosonic super-WIMP interactions with the XENON100 experiment
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days x34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8-125) keV/c(2) mass range, excluding couplings to electrons with coupling constants of g(ae) > 3 x 10(-13) for pseudo-scalar and alpha'/alpha > 2 x 10(-28) for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.
  •  
15.
  • Aprile, E., et al. (författare)
  • Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data
  • 2017
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 118:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431(-14)(+16) day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 sigma, from a previous analysis of a subset of this data, to 1.8 sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 sigma.
  •  
16.
  • Aprile, E., et al. (författare)
  • Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above similar to 5 GeV/c(2), but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c(2) by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
  •  
17.
  • Aprile, E., et al. (författare)
  • Search for magnetic inelastic dark matter with XENON100
  • 2017
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c(2) and 122.7 GeV/c(2) are excluded at 3.3 sigma and 9.3 sigma, respectively.
  •  
18.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
19.
  • Aprile, E., et al. (författare)
  • Search for two-neutrino double electron capture of Xe-124 with XENON100
  • 2017
  • Ingår i: Physical Review C. - 2469-9985. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.
  •  
20.
  • Aprile, E., et al. (författare)
  • Search for WIMP inelastic scattering off xenon nuclei with XENON100
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 x 10(3) kg . days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe-129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe-129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 x 10(-38) cm(2) at 100 GeV/c(2). This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.
  •  
21.
  • Aprile, E., et al. (författare)
  • Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon
  • 2018
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 97:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.
  •  
22.
  • Aprile, E., et al. (författare)
  • The XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
23.
  • Aprile, E., et al. (författare)
  • The XENON1T data acquisition system
  • 2019
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
  •  
24.
  • Aprile, E., et al. (författare)
  • XENON100 dark matter results from a combination of 477 live days
  • 2016
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 94:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, similar to 5 x 10(-3) events/(keV(ee) x kg x day)) before electronic recoil rejection, together with the increased exposure of 48 kg x yr, improves the sensitivity. A profile likelihood analysis using an energy range of (6.6-43.3) keV(nr) sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c(2), with a minimum of 1.1 x 10(-45) cm(2) at 50 GeV/c(2) and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 x 10(-40) cm(2) (52 x 10(-40) cm(2)) at a WIMP mass of 50 GeV/c(2), at 90% confidence level.
  •  
25.
  • Aprile, E., et al. (författare)
  • An approximate likelihood for nuclear recoil searches with XENON1T data
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 82:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure.
  •  
26.
  • Aprile, E., et al. (författare)
  • Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 x 10(-42) cm(2) at 30 GeV/c(2) and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
  •  
27.
  • Aprile, E., et al. (författare)
  • Effective Field Theory and Inelastic Dark Matter Results from XENON1T
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In this work we expand on the XENON1T nuclear recoil searches and study the individual signals of Dark Matter interactions from operators up to dimension-eight in a Chiral Effective Field Theory (ChEFT) as well as a model of inelastic Dark Matter using data from the two science runs of the detector totalling 1 tonne*year exposure. For these analyses we extended the region of interest from [4.9, 40.9]keVnr to [4.9, 54.4]keVnr to enhance our sensitivity for signals that peak at nonzero energies. We show that the data is consistent with a background only hypothesis, with small excesses in the models which peak between 20 and 50keVnr, obtaining a maximum local discovery significance of 1.7 for the VVs ChEFT model for a WIMP mass of 70GeV/c2, and 1.8 for an iDM particle of 50GeV/c2 with a mass splitting of 100keV/c2. For each model we report 90% confidence level upper limits. We also report limits on three benchmark models of WIMP interaction using ChEFT for which we investigate the effect of isospin breaking interactions, reporting up to 6 orders of magnitude weaker limits with respect to the isospin conserving case driven by cancellations in the expected rate.
  •  
28.
  • Aprile, E., et al. (författare)
  • Emission of single and few electrons in XENON1T and limits on light dark matter
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons.
  •  
29.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
30.
  • Aprile, E., et al. (författare)
  • Material radiopurity control in the XENONnT experiment
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 82:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (∼∼17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222Rn activity concentration in XENONnT is determined to be 4.2 (+0.5−0.7) μBq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.
  •  
31.
  • Aprile, E., et al. (författare)
  • Observation of two-neutrino double electron capture in 124Xe with XENON1T
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 568:7753, s. 532-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude. Until now, indications of 2νECEC decays have only been seen for two isotopes, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance. The 2νECEC half-life is an important observable for nuclear structure models and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments. 
  •  
32.
  • Aprile, E., et al. (författare)
  • XENON1T dark matter data analysis : Signal and background models and statistical inference
  • 2019
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 99:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 metric ton liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 metric ton x year exposure of XENON1T data, that leads to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2).
  •  
33.
  • Aprile, E., et al. (författare)
  • XENON1T dark matter data analysis : Signal reconstruction, calibration, and event selection
  • 2019
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 100:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above 6 GeV/c(2) scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric ton x year exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection, and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed.
  •  
34.
  • Aprile, E., et al. (författare)
  • Application and modeling of an online distillation method to reduce krypton and argon in XENON1T
  • 2022
  • Ingår i: Progress of Theoretical and Experimental Physics. - : Oxford University Press (OUP). - 2050-3911. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360 +/- 60) ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fitted to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove Ar-37 after its injection for a low-energy calibration in XENON1T. This makes the usage of Ar-37 as a regular calibration source possible in the future. The online distillation can be applied to next-generation liquid xenon time projection chamber experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large-scale detectors.
  •  
35.
  • Aprile, E., et al. (författare)
  • Dark Matter Search Results from a One Ton-Year Exposure of XENON1T
  • 2018
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 121:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30 +/- 0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4; 10.6] keV(ee) ([4.9; 40.9] keV(nr)), exhibits an ultralow electron recoil background rate of [82(-3)(+5) (syst) +/- 3 stat)] events/ton yr keV(ee)). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2), with a minimum of 4.1 x 10(-47) cm(2) at 30 GeV/c(2) and a 90% confidence level.
  •  
36.
  • Aprile, E., et al. (författare)
  • Excess electronic recoil events in XENON1T
  • 2020
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
37.
  • Aprile, E., et al. (författare)
  • Projected WIMP sensitivity of the XENONnT dark matter experiment
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)).
  •  
38.
  • Aprile, E., et al. (författare)
  • Search for Coherent Elastic Scattering of Solar B-8 Neutrinos in the XENON1T Dark Matter Experiment
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 126:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for nuclear recoil signals from solar B-8 neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant B-8 neutrinolike excess is found in an exposure of 0.6 t x y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c(-2) by as much as an order of magnitude.
  •  
39.
  • Aprile, E., et al. (författare)
  • Search for inelastic scattering of WIMP dark matter in XENON1T
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 103:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe-129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2 sigma. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c(2), with the strongest upper limit of 3.3 x 10(-39) cm(2) for 130 GeV/c(2) WIMPs at 90% confidence level.
  •  
40.
  • Soler, J. M., et al. (författare)
  • Predictive Modeling of a Simple Field Matrix Diffusion Experiment Addressing Radionuclide Transport in Fractured Rock. Is It So Straightforward?
  • 2022
  • Ingår i: Nuclear Technology. - : Informa UK Limited. - 0029-5450 .- 1943-7471. ; 208:6, s. 1059-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • The SKB GroundWater Flow and Transport of Solutes Task Force is an international forum in the area of conceptual and numerical modeling of groundwater flow and solute transport in fractured rocks relevant for the deep geological disposal of radioactive waste. Two in situ matrix diffusion experiments in crystalline rock (gneiss) were performed at POSIVA’s ONKALO underground facility in Finland. Synthetic groundwater containing several conservative and sorbing radiotracers was injected at one end of a borehole interval and flowed along a thin annulus toward the opposite end. Several teams performed predictive modeling of the tracer breakthrough curves using “conventional” modeling approaches (constant diffusion and sorption in the rock, no or minimum rock heterogeneity). Supporting information, derived from small-scale laboratory experiments, was provided. The teams were free to implement different concepts, use different codes, and apply the transport and retention parameters that they considered to be most suited (i.e., not a benchmark exercise). The main goal was the comparison of the different sets of results and the analysis of the possible differences for this relatively simple experimental setup with a well-defined geometry. Even though the experiment was designed to study matrix diffusion, the calculated peaks of the breakthrough curves were very sensitive to the assumed magnitude of dispersion in the borehole annulus. However, given the very different timescales for advection and matrix diffusion, the tails of the curves provided information concerning diffusion and retention in the rock matrix regardless of the magnitude of dispersion. In addition, although the task was designed to be a blind modeling exercise, the model results have also been compared to the measured experimental breakthroughs. Experimental results tend to show relatively small activities, wide breakthroughs, and early first arrivals, which are somewhat similar to model results using large dispersivity values. 
  •  
41.
  •  
42.
  •  
43.
  • Trinchero, P., et al. (författare)
  • A Particle-Based Conditional Sampling Scheme for the Simulation of Transport in Fractured Rock With Diffusion Into Stagnant Water and Rock Matrix
  • 2020
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 56:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ experiments and field-scale characterization studies have pointed out that, in fractured crystalline media, groundwater flow is highly channelized. This implies that, at the scale of a single fracture, only part of the fracture surface area is in contact with flowing water, while the rest of in-plane water is essentially stagnant and can be accessed by solutes via molecular diffusion. Despite their importance for contaminant retention, to date, there are no numerical or analytical approaches that could be used to assess the implication of stagnant water zones on solute transport in realistic large-scale Discrete Fracture Network-based models. Here, we present an efficient and flexible algorithm for the simulation of transport in fractured rock with diffusion into stagnant water and rock matrix. The algorithm is a generalization of a previously developed numerical framework for time domain particle tracking in sparsely fractured rock. The key of the generalization is that total time in fracture (τf) is first evaluated using a Monte Carlo sampling and then a second sampling is performed conditioned on τf. The algorithm has been successfully validated against existing independent solutions and the implication of diffusion into stagnant water and secondary diffusion into the matrix has been assessed for a realistic modeling scenario. The results show that, due to diffusion into stagnant water, contaminants are more strongly retarded. This increased retention is more significant for sorbing species, as a larger number of sorption sites is accessible. A high sensitivity to the flowing channel/stagnant water zone geometry has also been observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy