SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Trojanowski John) "

Search: WFRF:(Trojanowski John)

  • Result 1-50 of 72
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
2.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
3.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
4.
  • Nicolas, Aude, et al. (author)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • In: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Journal article (peer-reviewed)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
5.
  • Deming, Yuetiva, et al. (author)
  • Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers
  • 2017
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:5, s. 839-856
  • Journal article (peer-reviewed)abstract
    • More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case–control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = −0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.
  •  
6.
  • Deming, Yuetiva, et al. (author)
  • Sex-specific genetic predictors of Alzheimer’s disease biomarkers
  • 2018
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 136:6, s. 857-872
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as endophenotypes in Alzheimer’s disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations. Data came from a previous genome-wide association study (GWAS) of CSF Aβ42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex (PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data from the Religious Orders Study and Rush Memory and Aging Project. In Aβ42, we observed sex interactions at one previous and one novel locus: rs316341 within SERPINB1 (p = 0.04) and rs13115400 near LINC00290 (p = 0.002). These loci showed stronger associations among females (β = − 0.03, p = 4.25 × 10−8; β = 0.03, p = 3.97 × 10−8) than males (β = − 0.02, p = 0.009; β = 0.01, p = 0.20). Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated with higher levels of amyloidosis among females (corrected p values < 0.02) but not males (p > 0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to GMNC (p = 0.004), driven by a stronger association among females (β = 0.05, p = 4.57 × 10−10) compared to males (β = 0.02, p = 0.03). There was also a sex-specific association between rs1393060 and tangle density at autopsy (pfemale = 0.047; pmale = 0.96), and higher levels of expression of two genes within this locus were associated with lower tangle density among females (OSTN p = 0.006; CLDN16 p = 0.002) but not males (p ≥ 0.32). Results suggest a female-specific role for SERPINB1 in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may improve understanding of AD’s genetic architecture.
  •  
7.
  • Gallagher, Michael D., et al. (author)
  • TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 127:3, s. 407-418
  • Journal article (peer-reviewed)abstract
    • Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
  •  
8.
  • Kun-Rodrigues, Celia, et al. (author)
  • A comprehensive screening of copy number variability in dementia with Lewy bodies.
  • 2019
  • In: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 75
  • Journal article (peer-reviewed)abstract
    • The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.
  •  
9.
  • van Rheenen, Wouter, et al. (author)
  • Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis
  • 2016
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1043-1048
  • Journal article (peer-reviewed)abstract
    • To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
  •  
10.
  • Alimena, Juliette, et al. (author)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • In: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Journal article (peer-reviewed)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
11.
  • de Flores, Robin, et al. (author)
  • Characterization of hippocampal subfields using ex vivo MRI and histology data : Lessons for in vivo segmentation
  • 2020
  • In: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:6, s. 545-564
  • Journal article (peer-reviewed)abstract
    • Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
  •  
12.
  • Kovacs, Gabor G., et al. (author)
  • Aging-related tau astrogliopathy (ARTAG) : harmonized evaluation strategy
  • 2016
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 131:1, s. 87-102
  • Journal article (peer-reviewed)abstract
    • Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
  •  
13.
  • Kovacs, Gabor G., et al. (author)
  • Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG)
  • 2017
  • In: Journal of Neuropathology and Experimental Neurology. - : Oxford University Press (OUP). - 0022-3069 .- 1554-6578. ; 76:7, s. 605-619
  • Journal article (peer-reviewed)abstract
    • Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was > 60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (> 90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.
  •  
14.
  • Majounie, Elisa, et al. (author)
  • Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study
  • 2012
  • In: Lancet Neurology. - 1474-4465. ; 11:4, s. 323-330
  • Journal article (peer-reviewed)abstract
    • Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7.0%) of 3377 white individuals from the USA, Europe, and Australia, two (4.1%) of 49 black individuals from the USA, and six (8.3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39.3%) of 552 white individuals with familial MS from Europe and the USA. 59 (6.0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24.8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic MS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9472 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.
  •  
15.
  • Ravikumar, Sadhana, et al. (author)
  • Ex vivo MRI atlas of the human medial temporal lobe : characterizing neurodegeneration due to tau pathology
  • 2021
  • In: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
  •  
16.
  • Ravikumar, Sadhana, et al. (author)
  • Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation
  • 2023
  • In: Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings. - 0302-9743 .- 1611-3349. - 9783031340475 ; 13939 LNCS, s. 692-704
  • Conference paper (peer-reviewed)abstract
    • When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
  •  
17.
  • Ravikumar, Sadhana, et al. (author)
  • Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging
  • 2021
  • In: Machine Learning in Clinical Neuroimaging - 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030875855 ; 13001 LNCS, s. 3-12
  • Conference paper (peer-reviewed)abstract
    • Neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s Disease (AD). In this work, we investigate the relationship between MTL morphometry features derived from high-resolution ex vivo imaging and histology-based measures of NFT pathology using a topological unfolding framework applied to a dataset of 18 human postmortem MTL specimens. The MTL has a complex 3D topography and exhibits a high degree of inter-subject variability in cortical folding patterns which poses a significant challenge for volumetric registration methods typically used during MRI template construction. By unfolding the MTL cortex, the proposed framework explicitly accounts for the sheet-like geometry of the MTL cortex and provides a two-dimensional reference coordinate space which can be used to implicitly register cortical folding patterns across specimens based on distance along the cortex despite large anatomical variability. Leveraging this framework in a subset of 15 specimens, we characterize the associations between NFTs and morphological features such as cortical thickness and surface curvature and identify regions in the MTL where patterns of atrophy are strongly correlated with NFT pathology.
  •  
18.
  • Sadaghiani, Shokufeh, et al. (author)
  • Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI
  • 2023
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2355-2364
  • Journal article (peer-reviewed)abstract
    • Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Results: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. Conclusion: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Highlights: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
  •  
19.
  • Büki, Andras, 1966-, et al. (author)
  • The role of calpail-mediated spectrin proteolysis in traumatically induced axonal injury
  • 1999
  • In: Journal of Neuropathology and Experimental Neurology. - : American Association of Neuropathologists. - 0022-3069 .- 1554-6578. ; 58:4, s. 365-375
  • Journal article (peer-reviewed)abstract
    • In animals and man, traumatic brain injury (TBI) results in axonal injury (AI) that contributes to morbidity and mortality. Such injured axons show progressive change leading to axonal disconnection. Although several theories implicate calcium in the pathogenesis of AI, experimental studies have failed to confirm its pivotal role. To explore the contribution of Ca2+-induced proteolysis to axonal injury, this study was undertaken in an animal model of TBI employing antibodies targeting both calpain-mediated spectrin proteolysis (CMSP) and focal neurofilament compaction (NFC), a marker of intra-axonal cytoskeletal perturbation, at 15-120 minutes (min) postinjury. Light microscopy (LM) revealed that TBI consistently evoked focal, intra-axonal CMSP that was spatially and temporally correlated with NFC. These changes were seen at 15 min postinjury with significantly increasing number of axons demonstrating CMSP immunoreactivity over time postinjury. Electron microscopy (EM) demonstrated that at 15 min postinjury CMSP was confined primarily to the subaxolemmal network. With increasing survival (30-120 min) CMSP filled the axoplasm proper. These findings provide the first direct evidence for focal CMSP in the pathogenesis of generalized/diffuse AI. Importantly, they also reveal an initial subaxolemmal involvement prior to induction of a more widespread axoplasmic change indicating a spatial-temporal compartmentalization of the calcium-induced proteolytic process that may be amenable to rapid therapeutic intervention. 
  •  
20.
  • Chapuis, Julien, et al. (author)
  • Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism
  • 2017
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:6, s. 955-966
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer’s disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the “post-GWAS” era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a β3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aβ peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aβ peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aβ peptide production.
  •  
21.
  • Crary, John F., et al. (author)
  • Primary age-related tauopathy (PART) : a common pathology associated with human aging
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 128:6, s. 755-766
  • Journal article (peer-reviewed)abstract
    • We recommend a new term, "primary age-related tauopathy" (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer's disease (AD), in the absence of amyloid (A beta) plaques. For these "NFT+/A beta-aEuroe brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as "tangle-only dementia" and "tangle-predominant senile dementia", are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of A beta accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.
  •  
22.
  • Hansson, Oskar, et al. (author)
  • CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression : A study of fully automated immunoassays in BioFINDER and ADNI cohorts
  • 2018
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:11, s. 1470-1481
  • Journal article (peer-reviewed)abstract
    • Introduction: We studied whether fully automated Elecsys cerebrospinal fluid (CSF) immunoassay results were concordant with positron emission tomography (PET) and predicted clinical progression, even with cutoffs established in an independent cohort. Methods: Cutoffs for Elecsys amyloid-β1–42 (Aβ), total tau/Aβ(1–42), and phosphorylated tau/Aβ(1–42) were defined against [18F]flutemetamol PET in Swedish BioFINDER (n = 277) and validated against [18F]florbetapir PET in Alzheimer's Disease Neuroimaging Initiative (n = 646). Clinical progression in patients with mild cognitive impairment (n = 619) was studied. Results: CSF total tau/Aβ(1–42) and phosphorylated tau/Aβ(1–42) ratios were highly concordant with PET classification in BioFINDER (overall percent agreement: 90%; area under the curve: 94%). The CSF biomarker statuses established by predefined cutoffs were highly concordant with PET classification in Alzheimer's Disease Neuroimaging Initiative (overall percent agreement: 89%–90%; area under the curves: 96%) and predicted greater 2-year clinical decline in patients with mild cognitive impairment. Strikingly, tau/Aβ ratios were as accurate as semiquantitative PET image assessment in predicting visual read–based outcomes. Discussion: Elecsys CSF biomarker assays may provide reliable alternatives to PET in Alzheimer's disease diagnosis.
  •  
23.
  •  
24.
  • Kun-Rodrigues, Celia, et al. (author)
  • Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies
  • 2017
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 49
  • Journal article (peer-reviewed)abstract
    • . C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of . C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of . C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that . C9orf72 repeat expansions are not causally associated with DLB.
  •  
25.
  • Mattsson, Niklas, 1979, et al. (author)
  • The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers.
  • 2011
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 7:4
  • Journal article (peer-reviewed)abstract
    • The cerebrospinal fluid (CSF) biomarkers amyloid β (Aβ)-42, total-tau (T-tau), and phosphorylated-tau (P-tau) demonstrate good diagnostic accuracy for Alzheimer's disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimer's Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch-to-batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program.
  •  
26.
  • Nelson, Peter T., et al. (author)
  • Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status : A Review of the Literature
  • 2012
  • In: Journal of Neuropathology and Experimental Neurology. - 0022-3069 .- 1554-6578. ; 71:5, s. 362-381
  • Research review (peer-reviewed)abstract
    • Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. beta-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of AA plaques and neurofibrillary tangles. Although AA plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.
  •  
27.
  • Young, Alexandra L., et al. (author)
  • Empirical pathological staging and subtyping of TDP-43 proteinopathies
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S4
  • Journal article (peer-reviewed)abstract
    • Background: Pathological aggregation of tar DNA-binding protein 43 (TDP-43) in the brain is the primary cause of many cases of frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). It is therefore imperative to establish empirical staging systems to characterize and distinguish stereotypical patterns and commonplace deviations of different TDP-43 proteinopathies. Method: We use ordinal ratings of TDP-43 burden from 19 brain regions to perform data-driven disease progression modeling (SuStaIn) to find the most likely trajectories for FTLD-TDP (n = 108), ALS (n = 137) and LATE (n = 283) from the CNDR Brain Bank at the University of Pennsylvania. Subtype number was defined using cross-validated information criterion. Each individual was assigned a subtype and stage. Multivariate OLS models tested differences between subtypes. Stages were compared to age and existing staging schemes. Cross-validated logistic regression was used for 3-way classification using SuStaIn information only. Result: SuStaIn provided data-driven staging of TDP-43 proteinopathies complementing previously described human-defined staging schema, further providing additional detail (Fig1A-C; Fig3A-C). SuStaIn also identified two distinct subtypes within FTLD-TDP and a further two within ALS (Fig1D). FTLD-TDP subtypes differed in TDP-43 type and Alzheimer’s disease pathology (Table1); ALS subtypes were differentiated by age (Table 2) and by antemortem clinical characteristics. No subtypes were observed for the LATE group. Progression along data-driven stages was positively associated with age in LATE individuals, but negatively associated with age in individuals with FTLD-TDP (Fig2). Using only regional TDP-43 severity, our data driven model could distinguish individuals diagnosed with ALS, FTD or LATE with a cross-validated balanced precision of 0.93 and balanced recall of 0.92, and these metrics improved to 0.95 and 0.96 when combined with a logistic regression model (Fig3). Very little stage overlap was found between FTLD-TDP and LATE, but stages that did overlap showed subtly different patterns (Fig4). Conclusion: We provide an empirical pathological staging system for ALS, FTLD-TDP and LATE, which is sufficient for staging and accurate classification. We demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns, whilst LATE exhibits a homogeneous progression pattern.
  •  
28.
  • Yushkevich, Paul A., et al. (author)
  • Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe
  • 2021
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2784-2797
  • Journal article (peer-reviewed)abstract
    • Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
  •  
29.
  • Abraham, Roshan Mammen, et al. (author)
  • Tau neutrinos in the next decade : from GeV to EeV
  • 2022
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 49:11
  • Journal article (peer-reviewed)abstract
    • Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
  •  
30.
  • Allanach, Benjamin C., et al. (author)
  • Simple and statistically sound strategies for analysing physical theories
  • 2022
  • In: Reports on progress in physics (Print). - : Institute of Physics Publishing (IOPP). - 0034-4885 .- 1361-6633. ; 85:5
  • Research review (peer-reviewed)abstract
    • Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
  •  
31.
  • Alosco, Michael L, et al. (author)
  • Cerebrospinal fluid tau, Aβ, and sTREM2 in Former National Football League Players: Modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration.
  • 2018
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 14:9, s. 1159-1170
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) protein analysis may facilitate detection and elucidate mechanisms of neurological consequences from repetitive head impacts (RHI), such as chronic traumatic encephalopathy. We examined CSF concentrations of total tau (t-tau), phosphorylated tau, and amyloid β1-42 and their association with RHI in former National Football League (NFL) players. The role of microglial activation (using sTREM2) was examined as a pathogenic mechanism of chronic traumatic encephalopathy.Sixty-eight former NFL players and 21 controls underwent lumbar puncture to quantify t-tau, p-tau181, amyloid β1-42, and sTREM2 in the CSF using immunoassays. The cumulative head impact index estimated RHI.No between-group differences for CSF analytes emerged. In the former NFL players, the cumulative head impact index predicted higher t-tau concentrations (P=.041), and higher sTREM2 levels were associated with higher t-tau concentrations (P=.009).In this sample of former NFL players, greater RHI and increased microglial activation were associated with higher CSF t-tau concentrations.
  •  
32.
  • Anchordoqui, Luis A., et al. (author)
  • The Forward Physics Facility : Sites, experiments, and physics potential
  • 2022
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 968, s. 1-50
  • Journal article (peer-reviewed)abstract
    • The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.
  •  
33.
  • Blennow, Kaj, 1958, et al. (author)
  • Predicting clinical decline and conversion to Alzheimer's disease or dementia using novel Elecsys Aβ(1-42), pTau and tTau CSF immunoassays.
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • We evaluated the performance of CSF biomarkers for predicting risk of clinical decline and conversion to dementia in non-demented patients with cognitive symptoms. CSF samples from patients in two multicentre longitudinal studies (ADNI, n=619; BioFINDER, n=431) were analysed. Aβ(1-42), tTau and pTau CSF concentrations were measured using Elecsys CSF immunoassays, and tTau/Aβ(1-42) and pTau/Aβ(1-42) ratios calculated. Patients were classified as biomarker (BM)-positive or BM-negative at baseline. Ability of biomarkers to predict risk of clinical decline and conversion to AD/dementia was assessed using pre-established cut-offs for Aβ(1-42) and ratios; tTau and pTau cut-offs were determined. BM-positive patients showed greater clinical decline than BM-negative patients, demonstrated by greater decreases in MMSE scores (all biomarkers: -2.10 to -0.70). Risk of conversion to AD/dementia was higher in BM-positive patients (HR: 1.67to11.48). Performance of Tau/Aβ(1-42) ratios was superior to single biomarkers, and consistent even when using cut-offs derived in a different cohort. Optimal pTau and tTau cut-offs were approximately 27pg/mL and 300pg/mL in both BioFINDER and ADNI. Elecsys pTau/Aβ(1-42) and tTau/Aβ(1-42) are robust biomarkers for predicting risk of clinical decline and conversion to dementia in non-demented patients, and may support AD diagnosis in clinical practice.
  •  
34.
  • Cousins, Katheryn A Q, et al. (author)
  • ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration.
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 822-830
  • Journal article (peer-reviewed)abstract
    • The ATN framework provides an in vivo diagnosis of Alzheimer's disease (AD) using cerebrospinal fluid (CSF) biomarkers of pathologic amyloid plaques (A), tangles (T), and neurodegeneration (N). ATN is rarely evaluated in pathologically confirmed patients and its poor sensitivity to suspected non-Alzheimer's pathophysiologies (SNAP), including frontotemporal lobar degeneration (FTLD), leads to misdiagnoses. We compared accuracy of ATN (ATNTAU ) using CSF total tau (t-tau) to a modified strategy (ATNNfL ) using CSF neurofilament light chain (NfL) in an autopsy cohort.ATNTAU and ATNNfL were trained in an independent sample and validated in autopsy-confirmed AD (n=67) and FTLD (n=27).ATNNfL more accurately identified FTLD as SNAP (sensitivity=0.93, specificity=0.94) than ATNTAU (sensitivity=0.44, specificity=0.97), even in cases with co-occurring AD and FTLD. ATNNfL misclassified fewer AD and FTLD as "Normal" (2%) than ATNTAU (14%).ATNNfL is a promising diagnostic strategy that may accurately identify both AD and FTLD, even when pathologies co-occur.
  •  
35.
  • Couthouis, Julien, et al. (author)
  • A yeast functional screen predicts new candidate ALS disease genes
  • 2011
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:52, s. 20881-20890
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of the segenes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having amore severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
  •  
36.
  • De Meyer, Geert, et al. (author)
  • Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people.
  • 2010
  • In: Archives of neurology. - : American Medical Association (AMA). - 1538-3687 .- 0003-9942. ; 67:8, s. 949-56
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To identify biomarker patterns typical for Alzheimer disease (AD) in an independent, unsupervised way, without using information on the clinical diagnosis. DESIGN: Mixture modeling approach. SETTING: Alzheimer's Disease Neuroimaging Initiative database. Patients or Other PARTICIPANTS: Cognitively normal persons, patients with AD, and individuals with mild cognitive impairment. MAIN OUTCOME MEASURES: Cerebrospinal fluid-derived beta-amyloid protein 1-42, total tau protein, and phosphorylated tau(181P) protein concentrations were used as biomarkers on a clinically well-characterized data set. The outcome of the qualification analysis was validated on 2 additional data sets, 1 of which was autopsy confirmed. RESULTS: Using the US Alzheimer's Disease Neuroimaging Initiative data set, a cerebrospinal fluid beta-amyloid protein 1-42/phosphorylated tau(181P) biomarker mixture model identified 1 feature linked to AD, while the other matched the "healthy" status. The AD signature was found in 90%, 72%, and 36% of patients in the AD, mild cognitive impairment, and cognitively normal groups, respectively. The cognitively normal group with the AD signature was enriched in apolipoprotein E epsilon4 allele carriers. Results were validated on 2 other data sets. In 1 study consisting of 68 autopsy-confirmed AD cases, 64 of 68 patients (94% sensitivity) were correctly classified with the AD feature. In another data set with patients (n = 57) with mild cognitive impairment followed up for 5 years, the model showed a sensitivity of 100% in patients progressing to AD. CONCLUSIONS: The mixture modeling approach, totally independent of clinical AD diagnosis, correctly classified patients with AD. The unexpected presence of the AD signature in more than one-third of cognitively normal subjects suggests that AD pathology is active and detectable earlier than has heretofore been envisioned.
  •  
37.
  • De Meyer, Geert, et al. (author)
  • Diagnosis-Independent Alzheimer Disease Biomarker Signature in Cognitively Normal Elderly People
  • 2010
  • In: Archives of Neurology. - 0003-9942. ; 67:8, s. 949-956
  • Journal article (peer-reviewed)abstract
    • Objective: To identify biomarker patterns typical for Alzheimer disease (AD) in an independent, unsupervised way, without using information on the clinical diagnosis. Design: Mixture modeling approach. Setting: Alzheimer's Disease Neuroimaging Initiative database. Patients or Other Participants: Cognitively normal persons, patients with AD, and individuals with mild cognitive impairment. Main Outcome Measures: Cerebrospinal fluid derived p-amyloid protein 1-42, total tau protein, and phosphorylated tau(181p) protein concentrations were used as biomarkers on a clinically well-characterized data set. The outcome of the qualification analysis was validated on 2 additional data sets, 1 of which was autopsy confirmed. Results: Using the US Alzheimer's Disease Neuroimaging Initiative data set, a cerebrospinal fluid beta-amyloid protein 1-42/phosphorylated tau(181P) biomarker mixture model identified 1 feature linked to AD, while the other matched the "healthy" status. The AD signature was found in 90%, 72%, and 36% of patients in the AD, mild cognitive impairment, and cognitively normal groups, respectively. The cognitively normal group with the AD signature was enriched in apolipoprotein E 64 allele carriers. Results were validated on 2 other data sets. In 1 study consisting of 68 autopsy-confirmed AD cases, 64 of 68 patients (94% sensitivity) were correctly classified with the AD feature. In another. data set with patients (n=57) with mild cognitive impairment followed up for 5 years, the model showed a sensitivity of 100% in patients progressing to AD. Conclusions: The mixture modeling approach, totally independent of clinical AD diagnosis, correctly classified patients with AD. The unexpected presence of the AD signature in more than one-third of cognitively normal subjects suggests that AD pathology is active and detectable earlier than has heretofore been envisioned.
  •  
38.
  • Ewers, Michael, et al. (author)
  • Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease
  • 2012
  • In: Neurobiology of Aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 33:8, s. 1599-1608
  • Journal article (peer-reviewed)abstract
    • Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (A beta(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects. Published by Elsevier Inc.
  •  
39.
  • Hampel, Harald, et al. (author)
  • Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.
  • 2010
  • In: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 334-46
  • Research review (peer-reviewed)abstract
    • Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer's disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
  •  
40.
  • Hampel, Harald, et al. (author)
  • Total and phosphorylated tau protein as biological markers of Alzheimer's disease.
  • 2010
  • In: Experimental gerontology. - : Elsevier BV. - 1873-6815 .- 0531-5565. ; 45:1, s. 30-40
  • Journal article (peer-reviewed)abstract
    • Advances in our understanding of tau-mediated neurodegeneration in Alzheimer's disease (AD) are moving this disease pathway to center stage for the development of biomarkers and disease modifying drug discovery efforts. Immunoassays were developed detecting total (t-tau) and tau phosphorylated at specific epitopes (p-tauX) in cerebrospinal fluid (CSF), methods to analyse tau in blood are at the experimental beginning. Clinical research consistently demonstrated CSF t- and p-tau increased in AD compared to controls. Measuring these tau species proved informative for classifying AD from relevant differential diagnoses. Tau phosphorylated at threonine 231 (p-tau231) differentiated between AD and frontotemporal dementia, tau phosphorylated at serine 181 (p-tau181) enhanced classification between AD and dementia with Lewy bodies. T- and p-tau are considered "core" AD biomarkers that have been successfully validated by controlled large-scale multi-center studies. Tau biomarkers are implemented in clinical trials to reflect biological activity, mechanisms of action of compounds, support enrichment of target populations, provide endpoints for proof-of-concept and confirmatory trials on disease modification. World-wide quality control initiatives are underway to set required methodological and protocol standards. Discussions with regulatory authorities gain momentum defining the role of tau biomarkers for trial designs and how they may be further qualified for surrogate marker status.
  •  
41.
  • Henriksen, Kim, et al. (author)
  • The future of blood-based biomarkers for Alzheimer's disease.
  • 2014
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 10:1, s. 115-131
  • Journal article (peer-reviewed)abstract
    • Treatment of Alzheimer's disease (AD) is significantly hampered by the lack of easily accessible biomarkers that can detect disease presence and predict disease risk reliably. Fluid biomarkers of AD currently provide indications of disease stage; however, they are not robust predictors of disease progression or treatment response, and most are measured in cerebrospinal fluid, which limits their applicability. With these aspects in mind, the aim of this article is to underscore the concerted efforts of the Blood-Based Biomarker Interest Group, an international working group of experts in the field. The points addressed include: (1) the major challenges in the development of blood-based biomarkers of AD, including patient heterogeneity, inclusion of the "right" control population, and the blood-brain barrier; (2) the need for a clear definition of the purpose of the individual markers (e.g., prognostic, diagnostic, or monitoring therapeutic efficacy); (3) a critical evaluation of the ongoing biomarker approaches; and (4) highlighting the need for standardization of preanalytical variables and analytical methodologies used by the field.
  •  
42.
  • Kalia, Lorraine V, et al. (author)
  • Clinical Correlations With Lewy Body Pathology in LRRK2-Related Parkinson Disease.
  • 2015
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:1, s. 100-105
  • Journal article (peer-reviewed)abstract
    • Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of genetic Parkinson disease (PD) known to date. The clinical features of manifesting LRRK2 mutation carriers are generally indistinguishable from those of patients with sporadic PD. However, some PD cases associated with LRRK2 mutations lack Lewy bodies (LBs), a neuropathological hallmark of PD. We investigated whether the presence or absence of LBs correlates with different clinical features in LRRK2-related PD.
  •  
43.
  • Karikari, Thomas, et al. (author)
  • Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative.
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26, s. 429-442
  • Journal article (peer-reviewed)abstract
    • Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
  •  
44.
  • Korecka, Magdalena, et al. (author)
  • Analytical and Clinical Performance of Amyloid-Beta Peptides Measurements in CSF of ADNIGO/2 Participants by an LC-MS/MS Reference Method.
  • 2020
  • In: Clinical chemistry. - : Oxford University Press (OUP). - 1530-8561 .- 0009-9147. ; 66:4, s. 587-597
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ42) reliably detects brain amyloidosis based on its high concordance with plaque burden at autopsy and with amyloid positron emission tomography (PET) ligand retention observed in several studies. Low CSF Aβ42 concentrations in normal aging and dementia are associated with the presence of fibrillary Aβ across brain regions detected by amyloid PET imaging.An LC-MS/MS reference method for Aβ42, modified by adding Aβ40 and Aβ38 peptides to calibrators, was used to analyze 1445 CSF samples from ADNIGO/2 participants. Seventy runs were completed using 2 different lots of calibrators. For preparation of Aβ42 calibrators and controls spiking solution, reference Aβ42 standard with certified concentration was obtained from EC-JRC-IRMM (Belgium). Aβ40 and Aβ38 standards were purchased from rPeptide. Aβ42 calibrators' accuracy was established using CSF-based Aβ42 Certified Reference Materials (CRM).CRM-adjusted Aβ42 calibrator concentrations were calculated using the regression equation Y (CRM-adjusted) = 0.89X (calibrators) + 32.6. Control samples and CSF pools yielded imprecision ranging from 6.5 to 10.2% (Aβ42) and 2.2 to 7.0% (Aβ40). None of the CSF pools showed statistically significant differences in Aβ42 concentrations across 2 different calibrator lots. Comparison of Aβ42 with Aβ42/Aβ40 showed that the ratio improved concordance with concurrent [18F]-florbetapir PET as a measure of fibrillar Aβ (n=766) from 81 to 88%.Long-term performance assessment substantiates our modified LC-MS/MS reference method for 3 Aβ peptides. The improved diagnostic performance of the CSF ratio Aβ42/Aβ40 suggests that Aβ42 and Aβ40 should be measured together and supports the need for an Aβ40 CRM.
  •  
45.
  • Leinonen, Ville, et al. (author)
  • Diagnostic effectiveness of quantitative [¹⁸F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus.
  • 2014
  • In: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2, s. 46-
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: PET imaging of amyloid-β (Aβ) in vivo holds promise for aiding in earlier diagnosis and intervention in Alzheimer's disease (AD) and mild cognitive impairment. AD-like Aβ pathology is a common comorbidity in patients with idiopathic normal pressure hydrocephalus (iNPH). Fifty patients with iNPH needing ventriculo-peritoneal shunting or intracranial pressure monitoring underwent [18F]flutemetamol PET before (N = 28) or after (N = 22) surgery. Cortical uptake of [18F]flutemetamol was assessed visually by blinded reviewers, and also quantitatively via standard uptake value ratio (SUVR) in specific neocortical regions in relation to either cerebellum or pons reference region: the cerebral cortex of (prospective studies) or surrounding (retrospective studies) the biopsy site, the contralateral homolog, and a calculated composite brain measure. Aβ pathology in the biopsy specimen (standard of truth [SoT]) was measured using Bielschowsky silver and thioflavin S plaque scores, percentage area of grey matter positive for monoclonal antibody to Aβ (4G8), and overall pathology impression. We set out to find (1) which pair(s) of PET SUVR and pathology SoT endpoints matched best, (2) whether quantitative measures of [18F]flutemetamol PET were better for predicting the pathology outcome than blinded image examination (BIE), and (3) whether there was a better match between PET image findings in retrospective vs. prospective studies.RESULTS: Of the 24 possible endpoint/SoT combinations, the one with composite-cerebellum SUVR and SoT based on overall pathology had the highest Youden index (1.000), receiver operating characteristic area under the curve (1.000), sensitivity (1.000), specificity (1.000), and sum of sensitivity and specificity for the pooled data as well as for the retrospective and prospective studies separately (2.00, for all 3). The BIE sum of sensitivity and specificity, comparable to that for quantitation, was highest using Bielschowsky silver as SoT for all SUVRs (ipsilateral, contralateral, and composite, for both reference regions). The composite SUVR had a 100% positive predictive value (both reference regions) for the overall pathology diagnosis. All SUVRs had a 100% negative predictive value for the Bielschowsky silver result.CONCLUSION: Bielschowsky silver stain and overall pathology judgment showed the strongest associations with imaging results.
  •  
46.
  • Lewczuk, Piotr, et al. (author)
  • Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry.
  • 2018
  • In: The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry. - : Informa UK Limited. - 1814-1412. ; 19:4, s. 244-328
  • Journal article (peer-reviewed)abstract
    • In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
  •  
47.
  • Li, Yan, et al. (author)
  • Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques
  • 2022
  • In: Neurology. - 0028-3878. ; 98:7, s. 688-699
  • Journal article (peer-reviewed)abstract
    • Background and Objectives To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.MethodsPlasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.ResultsIn the combined cohort of 465 participants, plasma Aβ42/Aβ40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ϵ4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aβ42/Aβ40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ϵ4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals.DiscussionPlasma Aβ42/Aβ40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials.Classification of EvidenceThis study provides Class II evidence that plasma Aβ42/Aβ40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.
  •  
48.
  •  
49.
  •  
50.
  • Mattsson, Niklas, 1979, et al. (author)
  • Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer's disease.
  • 2014
  • In: Annals of clinical and translational neurology. - : Wiley. - 2328-9503. ; 1:8, s. 534-43
  • Journal article (peer-reviewed)abstract
    • Reduced cerebrospinal fluid (CSF) β-amyloid42 (Aβ42) and increased florbetapir positron emission tomography (PET) uptake reflects brain Aβ accumulation. These biomarkers are correlated with each other and altered in Alzheimer's disease (AD), but no study has directly compared their diagnostic performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 72
Type of publication
journal article (65)
research review (5)
conference paper (2)
Type of content
peer-reviewed (71)
other academic/artistic (1)
Author/Editor
Trojanowski, John Q (68)
Blennow, Kaj, 1958 (31)
Shaw, Leslie M (30)
Zetterberg, Henrik, ... (24)
Grossman, Murray (16)
Dickson, Dennis W (15)
show more...
Petersen, Ronald C. (12)
Cairns, Nigel J. (12)
Alafuzoff, Irina (11)
Hansson, Oskar (10)
van Deerlin, Viviann ... (9)
Kovacs, Gabor G. (8)
Hampel, Harald (8)
Elman, Lauren (8)
Masliah, Eliezer (8)
Toledo, Jon B (8)
Beach, Thomas G. (8)
Andreasson, Ulf, 196 ... (7)
Vanderstichele, Hugo (7)
Attems, Johannes (7)
Portelius, Erik, 197 ... (6)
Blennow, Kaj (6)
Rademakers, Rosa (6)
Morris, John C (6)
Hardy, John (6)
Zetterberg, Henrik (6)
Hyman, Bradley T (6)
Ghetti, Bernardino (6)
Halliday, Glenda M (6)
Soares, Holly (6)
Minthon, Lennart (5)
Al-Sarraj, Safa (5)
Fagan, Anne M (5)
Lewczuk, Piotr (5)
McKee, Ann C (5)
Engelborghs, Sebasti ... (5)
Mattsson, Niklas, 19 ... (5)
Schellenberg, Gerard ... (5)
Halliday, Glenda (5)
Seeley, William W. (5)
Murray, Melissa E (5)
Xie, Long (5)
Wisse, Laura E.M. (5)
Yushkevich, Paul A. (5)
Galasko, Douglas (5)
Hof, Patrick R (5)
Rogaeva, Ekaterina (5)
Pickering-Brown, Stu ... (5)
Moghekar, Abhay (5)
Brice, Alexis (5)
show less...
University
University of Gothenburg (38)
Lund University (28)
Uppsala University (15)
Karolinska Institutet (5)
Umeå University (3)
Stockholm University (2)
show more...
Royal Institute of Technology (1)
Örebro University (1)
show less...
Language
English (72)
Research subject (UKÄ/SCB)
Medical and Health Sciences (62)
Natural sciences (4)
Engineering and Technology (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view