SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trybel Florian Dr. rer. nat. 1993 ) "

Sökning: WFRF:(Trybel Florian Dr. rer. nat. 1993 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aslandukov, Andrey, et al. (författare)
  • Anionic N18 Macrocycles and a Polynitrogen Double Helix in Novel Yttrium Polynitrides YN6 and Y2N11 at 100 GPa
  • 2022
  • Ingår i: Angewandte Chemie International Edition. - Weinheim, Germany : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 61:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel yttrium nitrides, YN6 and Y2N11, were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser-heated diamond anvil cell. High-pressure synchrotron single-crystal X-ray diffraction revealed that the crystal structures of YN6 and Y2N11 feature a unique organization of nitrogen atoms-a previously unknown anionic N-18 macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN6 and Y2N11 compounds, show an anion-driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y2N11 is different from that previously found in Hf2N11 and because N-18 macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides.
  •  
2.
  • Dubrovinsky, Leonid, et al. (författare)
  • Materials synthesis at terapascal static pressures
  • 2022
  • Ingår i: Nature. - London, United Kingdom : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 605:7909, s. 274-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions(1,2). Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell(3), producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.
  •  
3.
  • Laniel, Dominique, et al. (författare)
  • Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56
  • 2023
  • Ingår i: Nature Chemistry. - : NATURE PORTFOLIO. - 1755-4330 .- 1755-4349. ; 15:5, s. 641-646
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N-5](-) anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N-6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N-6](4-). Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N-6](4-) is planar and proposed to be aromatic.
  •  
4.
  • Laniel, Dominique, et al. (författare)
  • Front Cover: Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′-P3N5, δ-P3N5 and PN2 (Chem. Eur. J. 62/2022)
  • 2022
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 28:62
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • For the last 30 years, the lack of a binary phosphorus nitride containing PN6 octahedra formed a scientific chasm between carbon-group and oxygen-group nitrides, both featuring a variety of solids with XN6 units (X being a non-metal element). Now, the discovery of the δ-P3N5 and PN2 phosphorus nitrides—formed under high pressure and both composed of the elusive PN6 octahedron—builds a long-sought-after bridge between these two groups of nitrides. More information can be found in the Research Article by D. Laniel, F. Trybel, and co-workers (DOI: 10.1002/chem.202201998).
  •  
5.
  • Laniel, Dominique, et al. (författare)
  • Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′‐P3N5, δ‐P3N5 and PN2
  • 2022
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 28:62
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. delta-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K-0=322 GPa for delta-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, delta-P3N5 undergoes a transformation into a novel alpha -P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of alpha -P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.
  •  
6.
  •  
7.
  • Laniel, Dominique, et al. (författare)
  • Synthesis of Ultra‐Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra
  • 2024
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3N4, hP126-C3N4, and tI24-CN2, in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.
  •  
8.
  • Meier, Thomas, et al. (författare)
  • Direct hydrogen quantification in high-pressure metal hydrides
  • 2023
  • Ingår i: Matter and Radiation at Extremes. - : American Institute of Physics (AIP). - 2468-2047 .- 2468-080X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure metal hydride (MH) research evolved into a thriving field within condensed matter physics following the realization of metallic compounds showing phonon mediated near room-temperature superconductivity. However, severe limitations in determining the chemical formula of the reaction products, especially with regards to their hydrogen content, impedes a deep understanding of the synthesized phases and can lead to significantly erroneous conclusions. Here, we present a way to directly access the hydrogen content of MH solids synthesized at high pressures in (laser-heated) diamond anvil cells using nuclear magnetic resonance spectroscopy. We show that this method can be used to investigate MH compounds with a wide range of hydrogen content, from MHx with x = 0.15 (CuH0.15) to x ≲ 6.4 (H6±0.4S5).
  •  
9.
  • Meier, Thomas, et al. (författare)
  • Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions
  • 2022
  • Ingår i: Nature Communications. - London, United Kingdom : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental study of hydrogen-bonds and their symmetrization under extreme conditions is predominantly driven by diffraction methods, despite challenges of localising or probing the hydrogen subsystems directly. Until recently, H-bond symmetrization has been addressed in terms of either nuclear quantum effects, spin crossovers or direct structural transitions; often leading to contradictory interpretations when combined. Here, we present high-resolution in-situ 1H-NMR experiments in diamond anvil cells investigating a range of systems containing linear O-H ⋯  O units at pressure ranges of up to 90 GPa covering their respective H-bond symmetrization. We found pronounced minima in the pressure dependence of the NMR resonance line-widths associated with a maximum in hydrogen mobility, precursor to a localisation of hydrogen atoms. These minima, independent of the chemical environment of the O-H ⋯  O unit, can be found in a narrow range of oxygen oxygen distances between 2.44 and 2.45 Å, leading to an average critical oxygen-oxygen distance of Å.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy