SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tseng Chiao Wei) "

Sökning: WFRF:(Tseng Chiao Wei)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tseng, Chiao-Wei, et al. (författare)
  • Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon‐nanoribbon field‐effect transistor (SiNR‐FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above‐Nernstian pH sensitivity is achieved on the SiNR‐FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR‐FET‐based pH sensor toward a wide range of applications.
  •  
2.
  •  
3.
  • Wang, Yaqiong, et al. (författare)
  • Domain Wall Free Polar Structure Enhanced Photodegradation Activity in Nanoscale Ferroelectric BaxSr1-xTiO3
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferroelectric materials exhibit anomalous behavior due to the presence of domains and domain walls which are related to the spontaneous polarization inherent in the crystal structure. Control of ferroelectric domains and domain walls has been used to enhance device performances in ultrasound, pyroelectric detectors, and photovoltaic systems with renewed interest in nanostructuring for energy applications. It is also known that ferroelectrics including domain walls can double photocatalytic rate and increase carrier lifetime from microsecond to millisecond. However, there remains a lack of understanding on the different contributions of the domain and domain walls to photocatalytic activities. Herein it is found, by comparing samples of nanostructured Ba(x)Sr(1-)(x)TiO(3)with and without a polar domain, that the material with polar domains has a faster reaction rate (k= 0.18 min(-1)) than the nonpolar one (k= 0.11 min(-1)). It is further revealed that the observed enhanced photoactivity of perovskite ferroelectric materials stems from the inherent polarization of the domain instead of domain walls. Here, the new understanding of the underlying physics of materials with a spontaneous dipole opens a door to enhance the performance of light induced energy harvesting systems.
  •  
4.
  • Wu, Jiyue, et al. (författare)
  • Ultrahigh field-induced strain in lead-free ceramics
  • 2020
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the worldwide concerns of environmental protection and sustainable development, lead-free piezoelectric materials are greatly desired for bridging the electrical energy to the mechanical energy. However, their lower energy conversion coefficient compared to the conventional lead-containing piezoelectric materials significantly limits their device applications. Herein, we introduce a novel strategy to increase the strain of lead-free ferroelectric system via material structure design to create polar nano regions (PNRs) and point defects in the material while retaining the global ferroelectric phase. This added short-range structural heterogeneity in the material will facilitate the field-induced phase transition and reversible domain wall switching to enhance the strain. Following this strategy, we demonstrate an ultrahigh strain induced by an electric field in non-textured lead-free Bi0.5Na0.5TiO3 (BNT)-based ceramics. The strain in unipolar mode (Suni) can reach up to 0.74% at 70 kV/cm, making it the highest value in reported lead-free ceramics so far. This puts forward a good route to design high-performance piezoelectric materials by material structure engineering. It also reveals the promising potential of lead-free piezoelectric materials in practical electromechanical device applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy