SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsurutani Bruce T.) "

Sökning: WFRF:(Tsurutani Bruce T.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hajra, Rajkumar, et al. (författare)
  • Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September : a quantitative study by the Rosetta Plasma Consortium
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:4, s. 4544-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • Four interplanetary corotating interaction regions (CIRs) were identified during 2016 June-September by the Rosetta Plasma Consortium (RPC) monitoring in situ the plasma environment of the comet 67P/Churyumov-Gerasimenko (67P) at heliocentric distances of similar to 3-3.8 au. The CIRs, formed in the interface region between low- and high-speed solar wind streams with speeds of similar to 320-400 km s(-1) and similar to 580-640 km s(-1), respectively, are characterized by relative increases in solar wind proton density by factors of similar to 13-29, in proton temperature by similar to 7-29, and in magnetic field by similar to 1-4 with respect to the pre-CIR values. The CIR boundaries are well defined with interplanetary discontinuities. Out of 10 discontinuities, four are determined to be forward waves and five are reverse waves, propagating at similar to 5-92 per cent of the magnetosonic speed at angles of similar to 20 degrees-87 degrees relative to ambient magnetic field. Only one is identified to be a quasi-parallel forward shock with magnetosonic Mach number of similar to 1.48 and shock normal angle of similar to 41 degrees. The cometary ionosphere response was monitored by Rosetta from cometocentric distances of similar to 4-30 km. A quiet time plasma density map was developed by considering dependences on cometary latitude, longitude, and cometocentric distance of Rosetta observations before and after each of the CIR intervals. The CIRs lead to plasma density enhancements of similar to 500-1000 per cent with respect to the quiet time reference level. Ionospheric modelling shows that increased ionization rate due to enhanced ionizing (>12-200 eV) electron impact is the prime cause of the large cometary plasma density enhancements during the CIRs. Plausible origin mechanisms of the cometary ionizing electron enhancements are discussed.
  •  
2.
  • Hajra, Rajkumar, et al. (författare)
  • Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 475:3, s. 4140-4147
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of similar to 2.8 (+/- 1.9), skewness similar to 0.43 (+/- 0.36), mean duration of similar to 2.7 (+/- 0.9) min and relative density variation Delta N/N of similar to 0.5 (+/- 0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.
  •  
3.
  • Krasnoselskikh, Vladimir, et al. (författare)
  • ICARUS : in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 277-315
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique in situ observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.
  •  
4.
  • Paetzold, Martin, et al. (författare)
  • Rosetta Radio Science Investigations (RSI)
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 599-627
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyurnov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010. respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The Simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy