SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Turc L.) "

Search: WFRF:(Turc L.)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hoilijoki, S., et al. (author)
  • Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF Bx Component During Southward IMF
  • 2019
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:6, s. 4037-4048
  • Journal article (peer-reviewed)abstract
    • This paper describes properties and behavior of magnetic reconnection and flux transfer events (FTEs) on the dayside magnetopause using the global hybrid-Vlasov code Vlasiator. We investigate two simulation runs with and without a sunward (positive)B-x component of the interplanetary magnetic field (IMF) when the IMF is southward. The runs are two-dimensional in real space in the noon-midnight meridional (polar) plane and three-dimensional in velocity space. Solar wind input parameters are identical in the two simulations with the exception that the IMF is purely southward in one but tilted 45 degrees toward the Sun in the other. In the purely southward case (i.e., without B-x) the magnitude of the magnetos heath magnetic field component tangential to the magnetopause is larger than in the run with a sunward tilt. This is because the shock normal is perpendicular to the IMF at the equatorial plane, whereas in the other run the shock configuration is oblique and a smaller fraction of the total IMF strength is compressed at the shock crossing. Hence, the measured average and maximum reconnection rate are larger in the purely southward run. The run with tilted IMF also exhibits a north-south asymmetry in the tangential magnetic field caused by the different angle between the IMF and the bow shock normal north and south of the equator. Greater north-south asymmetries are seen in the FTE occurrence rate, size, and velocity as well; FTEs moving toward the Southern Hemisphere are larger in size and observed less frequently than FTEs in the Northern Hemisphere.
  •  
2.
  • Johlander, Andreas, 1990-, et al. (author)
  • Ion Acceleration Efficiency at the Earth's Bow Shock : Observations and Simulation Results
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 914:2
  • Journal article (peer-reviewed)abstract
    • Collisionless shocks are some of the most efficient particle accelerators in heliospheric and astrophysical plasmas. Here we study and quantify ion acceleration at Earth's bow shock with observations from NASA's Magnetospheric Multiscale (MMS) satellites and in a global hybrid-Vlasov simulation. From the MMS observations, we find that quasiparallel shocks are more efficient at accelerating ions. There, up to 15% of the available energy goes into accelerating ions above 10 times their initial energy. Above a shock-normal angle of similar to 50 degrees, essentially no energetic ions are observed downstream of the shock. We find that ion acceleration efficiency is significantly lower when the shock has a low Mach number (M ( A ) < 6) while there is little Mach number dependence for higher values. We also find that ion acceleration is lower on the flanks of the bow shock than at the subsolar point regardless of the Mach number. The observations show that a higher connection time of an upstream field line leads to somewhat higher acceleration efficiency. To complement the observations, we perform a global hybrid-Vlasov simulation with realistic solar-wind parameters with the shape and size of the bow shock. We find that the ion acceleration efficiency in the simulation shows good quantitative agreement with the MMS observations. With the combined approach of direct spacecraft observations, we quantify ion acceleration in a wide range of shock angles and Mach numbers.
  •  
3.
  • Kajdic, P., et al. (author)
  • ULF Wave Transmission Across Collisionless Shocks : 2.5D Local Hybrid Simulations
  • 2021
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:11
  • Journal article (peer-reviewed)abstract
    • We study the interaction of upstream ultralow frequency (ULF) waves with collisionless shocks by analyzing the outputs of 11 2D local hybrid simulation runs. Our simulated shocks have Alfvenic Mach numbers between 4.29 and 7.42 and their theta BN angles are 15 degrees, 30 degrees, 45 degrees, and 50 degrees. The ULF wave foreshocks develop upstream of all of them. The wavelength and the amplitude of the upstream waves exhibit a complex dependence on the shock's MA and theta BN. The wavelength positively correlates with both parameters, with the dependence on theta BN being much stronger. The amplitude of the ULF waves is proportional to the product of the reflected beam velocity and density, which also depend on MA and theta BN. The interaction of the ULF waves with the shock causes large-scale (several tens of upstream ion inertial lengths) shock rippling. The properties of the shock ripples are related to the ULF wave properties, namely their wavelength and amplitude. In turn, the ripples have a large impact on the ULF wave transmission across the shock because they change local shock properties (theta BN, strength), so that different sections of the same ULF wavefront encounter shock with different characteristics. Downstream fluctuations do not resemble the upstream waves in terms the wavefront extension, orientation or their wavelength. However, some features are conserved in the Fourier spectra of downstream compressive waves that present a bump or flattening at wavelengths approximately corresponding to those of the upstream ULF waves. In the transverse downstream spectra, these features are weaker.
  •  
4.
  •  
5.
  •  
6.
  • Seiffge, D. J., et al. (author)
  • Recanalization Therapies in Acute Ischemic Stroke Patients Impact of Prior Treatment With Novel Oral Anticoagulants on Bleeding Complications and Outcome A Pilot Study
  • 2015
  • In: Circulation. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7322 .- 1524-4539. ; 132:13, s. 1261-1269
  • Journal article (peer-reviewed)abstract
    • Background-We explored the safety of intravenous thrombolysis (IVT) or intra-arterial treatment (IAT) in patients with ischemic stroke on non-vitamin K antagonist oral anticoagulants (NOACs, last intake <48 hours) in comparison with patients (1) taking vitamin K antagonists (VKAs) or (2) without previous anticoagulation (no-OAC). Methods and Results-This is a multicenter cohort pilot study. Primary outcome measures were (1) occurrence of intracranial hemorrhage (ICH) in 3 categories: any ICH (ICH any), symptomatic ICH according to the criteria of the European Cooperative Acute Stroke Study II (ECASS-II) (sICH ECASS-II) and the National Institute of Neurological Disorders and Stroke (NINDS) thrombolysis trial (sICH NINDS); and (2) death (at 3 months). Cohorts were compared by using propensity score matching. Our NOAC cohort comprised 78 patients treated with IVT/IAT and the comparison groups of 441 VKA patients and 8938 no-OAC patients. The median time from last NOAC intake to IVT/IAT was 13 hours (interquartile range, 8-22 hours). In VKA patients, median pre-IVT/IAT international normalized ratio was 1.3 (interquartile range, 1.1-1.6). ICH any was observed in 18.4% NOAC patients versus 26.8% in VKA patients and 17.4% in no-OAC patients. sICH ECASS-II and sICH NINDS occurred in 2.6%/3.9% NOAC patients, in comparison with 6.5%/9.3% of VKA patients and 5.0%/7.2% of no-OAC patients, respectively. At 3 months, 23.0% of NOAC patients in comparison with 26.9% of VKA patients and 13.9% of no-OAC patients had died. Propensity score matching revealed no statistically significant differences. Conclusions-IVT/IAT in selected patients with ischemic stroke under NOAC treatment has a safety profile similar to both IVT/IAT in patients on subtherapeutic VKA treatment or in those without previous anticoagulation. However, further prospective studies are needed, including the impact of specific coagulation tests.
  •  
7.
  • Westphal, L. P., et al. (author)
  • Association of prestroke metformin use, stroke severity, and thrombolysis outcome
  • 2020
  • In: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:4
  • Journal article (peer-reviewed)abstract
    • Objective To evaluate whether pretreatment with metformin (MET) is associated with less stroke severity and better outcome after IV thrombolysis (IVT), we analyzed a cohort of 1,919 patients with stroke with type 2 diabetes mellitus in a multicenter exploratory analysis. Methods Data from patients with diabetes and ischemic stroke treated with IVT were collected within the European Thrombolysis in Ischemic Stroke Patients (TRISP) collaboration. We applied propensity score matching (PSM) to obtain balanced baseline characteristics of patients treated with and without MET. Results Of 1,919 patients with stroke with type 2 diabetes who underwent IVT, 757 (39%) had received MET before stroke (MET+), whereas 1,162 (61%) had not (MET-). MET+ patients were younger with a male preponderance. Hypercholesterolemia and pretreatment with statins, antiplatelets, or antihypertensives were more common in the MET+ group. After PSM, the 2 groups were well balanced with respect to demographic and clinical aspects. Stroke severity on admission (NIH Stroke Scale 10.0 +/- 6.7 vs 11.3 +/- 6.5), 3-month degree of independence on modified Rankin Scale (2 [interquartile range (IQR) 1.0-4.0] vs 3 [IQR 1.0-4.0]), as well as mortality (12.5% vs 18%) were significantly lower in the MET+ group. The frequency of symptomatic intracerebral hemorrhages did not differ between groups. HbA1c levels were well-balanced between the groups. Conclusions Patients with stroke and diabetes on treatment with MET receiving IVT had less severe strokes on admission and a better functional outcome at 3 months. This suggests a protective effect of MET resulting in less severe strokes as well as beneficial thrombolysis outcome.
  •  
8.
  • Witasse, O., et al. (author)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Journal article (peer-reviewed)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
9.
  • Alho, M., et al. (author)
  • Electron Signatures of Reconnection in a Global eVlasiator Simulation
  • 2022
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:14
  • Journal article (peer-reviewed)abstract
    • Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.
  •  
10.
  •  
11.
  • Dubart, M., et al. (author)
  • Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space
  • 2022
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:10
  • Journal article (peer-reviewed)abstract
    • Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave-particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave-particle interactions.
  •  
12.
  • George, H., et al. (author)
  • Estimating Inner Magnetospheric Radial Diffusion Using a Hybrid-Vlasov Simulation
  • 2022
  • In: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 9
  • Journal article (peer-reviewed)abstract
    • Radial diffusion coefficients quantify non-adiabatic transport of energetic particles by electromagnetic field fluctuations in planetary radiation belts. Theoretically, radial diffusion occurs for an ensemble of particles that experience irreversible violation of their third adiabatic invariant, which is equivalent to a change in their Roederer L* parameter. Thus, the Roederer L* coordinate is the fundamental quantity from which radial diffusion coefficients can be computed. In this study, we present a methodology to calculate the Lagrangian derivative of L* from global magnetospheric simulations, and test it with an application to Vlasiator, a hybrid-Vlasov model of near-Earth space. We use a Hamiltonian formalism for particles confined to closed drift shells with conserved first and second adiabatic invariants to compute changes in the guiding center drift paths due to electric and magnetic field fluctuations. We investigate the feasibility of this methodology by computing the time derivative of L* for an equatorial ultrarelativistic electron population travelling along four guiding center drift paths in the outer radiation belt during a 5 minute portion of a Vlasiator simulation. Radial diffusion in this simulation is primarily driven by ultralow frequency waves in the Pc3 range (10-45 s period range) that are generated in the foreshock and transmitted through the magnetopause to the outer radiation belt environment. Our results show that an alternative methodology to compute detailed radial diffusion transport is now available and could form the basis for comparison studies between numerical and observational measurements of radial transport in the Earth's radiation belts.
  •  
13.
  •  
14.
  • Kilpua, E. K. J., et al. (author)
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions : Variation and Driver Dependence
  • 2019
  • In: Space Weather. - 1542-7390. ; 17:8, s. 1257-1280
  • Journal article (peer-reviewed)abstract
    • We present a statistical study of interplanetary conditions and geospace response to 89 coronal mass ejection-driven sheaths observed during Solar Cycles 23 and 24. We investigate in particular the dependencies on the driver properties and variations across the sheath. We find that the ejecta speed principally controls the sheath geoeffectiveness and shows the highest correlations with sheath parameters, in particular in the region closest to the shock. Sheaths of fast ejecta have on average high solar wind speeds, magnetic (B) field magnitudes, and fluctuations, and they generate efficiently strong out-of-ecliptic fields. Slow-ejecta sheaths are considerably slower and have weaker fields and field fluctuations, and therefore they cause primarily moderate geospace activity. Sheaths of weak and strong B field ejecta have distinct properties, but differences in their geoeffectiveness are less drastic. Sheaths of fast and strong ejecta push the subsolar magnetopause significantly earthward, often even beyond geostationary orbit. Slow-ejecta sheaths also compress the magnetopause significantly due to their large densities that are likely a result of their relatively long propagation times and source near the streamer belt. We find the regions near the shock and ejecta leading edge to be the most geoeffective parts of the sheath. These regions are also associated with the largest B field magnitudes, out-of-ecliptic fields, and field fluctuations as well as largest speeds and densities. The variations, however, depend on driver properties. Forecasting sheath properties is challenging due to their variable nature, but the dependence on ejecta properties determined in this work could help to estimate sheath geoeffectiveness through remote-sensing coronal mass ejection observations.
  •  
15.
  •  
16.
  •  
17.
  • Palin, Laurianne, et al. (author)
  • Three-dimensional current systems and ionospheric effects associated with small dipolarization fronts
  • 2015
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:5, s. 3739-3757
  • Journal article (peer-reviewed)abstract
    • We present a case study of eight successive plasma sheet (PS) activations (usually referred to as bursty bulk flows or dipolarization fronts), associated with small individual B-ZGSM increases on 31 March 2009 (0200-0900 UT), observed by the Time History of Events and Macroscale Interactions During Substorms mission. This series of events happens during very quiet solar wind conditions, over a period of 7 h preceding a substorm onset at 1230 UT. The amplitude of the dipolarizations increases with time. The low-amplitude dipolarization fronts are associated with few (1 or 2) rapid flux transport events (RFT, E-h > 2 mV/m), whereas the large-amplitude ones encompass many more RFT events. All PS activations are associated with small and localized substorm current wedge (SCW)-like current system signatures, which seems to be the consequence of RFT arrival in the near tail. The associated ground magnetic perturbations affect a larger part of the contracted auroral oval when, in the magnetotail, more RFT are embedded in PS activations (> 5). Dipolarization fronts with very low amplitude, a type usually not included in statistical studies, are of particular interest because we found even those to be associated with clear small SCW-like current system and particle injections at geosynchronous orbit. This exceptional data set highlights the role of flow bursts in the magnetotail and leads to the conclusion that we may be observing the smallest form of a substorm or rather its smallest element. This study also highlights the gradual evolution of the ionospheric current disturbance as the plasma sheet is observed to heat up.
  •  
18.
  • Palmroth, M., et al. (author)
  • Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation
  • 2018
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 36:5, s. 1171-1182
  • Journal article (peer-reviewed)abstract
    • We use a global hybrid-Vlasov simulation for the magnetosphere, Vlasiator, to investigate magnetosheath high-speed jets. Unlike many other hybrid-kinetic simulations, Vlasiator includes an unscaled geomagnetic dipole, indicating that the simulation spatial and temporal dimensions can be given in SI units without scaling. Thus, for the first time, this allows investigating the magnetosheath jet properties and comparing them directly with the observed jets within the Earth's magnetosheath. In the run shown in this paper, the interplanetary magnetic field (IMF) cone angle is 30°, and a foreshock develops upstream of the quasi-parallel magnetosheath. We visually detect a structure with high dynamic pressure propagating from the bow shock through the magnetosheath. The structure is confirmed as a jet using three different criteria, which have been adopted in previous observational studies. We compare these criteria against the simulation results. We find that the magnetosheath jet is an elongated structure extending earthward from the bow shock by ∼ 2.6 RE, while its size perpendicular to the direction of propagation is ∼ 0.5R/E. We also investigate the jet evolution and find that the jet originates due to the interaction of the bow shock with a high-dynamic-pressure structure that reproduces observational features associated with a short, large-amplitude magnetic structure (SLAMS). The simulation shows that magnetosheath jets can develop also under steady IMF, as inferred by observational studies. To our knowledge, this paper therefore shows the first global kinetic simulation of a magnetosheath jet, which is in accordance with three observational jet criteria and is caused by a SLAMS advecting towards the bow shock. 
  •  
19.
  • Suni, J., et al. (author)
  • Connection Between Foreshock Structures and the Generation of Magnetosheath Jets : Vlasiator Results
  • 2021
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:20
  • Journal article (peer-reviewed)abstract
    • Earth's magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth's bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet. Plain Language Summary The space around Earth is filled with plasma, the fourth state of matter. Earth's magnetic field shields our planet from the stream of plasma coming from the Sun, the solar wind. The solar wind plasma is slowed down at the Earth's bow shock, before it flows against and around the Earth's magnetic field in the magnetosheath. Sometimes, pulses of high density or velocity can occur in the magnetosheath that have the potential to disturb the inner regions of near-Earth space where many spacecraft orbit. We call these pulses magnetosheath jets. Magnetosheath jets have been observed by many spacecraft over the past few decades, but how they form has remained unclear. In this study, we use the Vlasiator model to simulate plasma in near-Earth space and investigate the origins of magnetosheath jets. We find that the formation of up to 75% of these jets can be explained by compressive structures in the foreshock, a region populated by intense wave activity extending sunward of the quasi-parallel bow shock, where interplanetary magnetic field lines allow shock-reflected particles to travel back toward the Sun. Key Points We investigated magnetosheath jets in four hybrid-Vlasov simulation runs with different solar wind parameters Foreshock compressive structures can explain the formation of up to 75% of magnetosheath jets The foreshock compressive structure-caused jets travel deeper into the magnetosheath than the 25% of the jets whose origins remain unclear
  •  
20.
  •  
21.
  • Turc, L., et al. (author)
  • Transmission of foreshock waves through Earth's bow shock
  • 2023
  • In: Nature Physics. - : Springer Nature. - 1745-2473 .- 1745-2481. ; 19:1, s. 78-86
  • Journal article (peer-reviewed)abstract
    • The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth's surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.
  •  
22.
  •  
23.
  • Wellbrock, A., et al. (author)
  • Observations of a Solar Energetic Particle Event from Inside and Outside the Coma of Comet 67P
  • 2022
  • In: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:12
  • Journal article (peer-reviewed)abstract
    • We analyze observations of an SEP event at Rosetta’s target comet 67P/Churyumov-Gerasimenko during March 6th-10th 2015. The comet was 2.15AU from the Sun, with the Rosetta spacecraft approximately 70km from the nucleus placing it deep inside the comet’s coma and allowing us to study its response. The Eastern flank of an ICME also encountered Rosetta on March 6th and 7th. Rosetta’s RPC data indicate increases in ionization rates, and cometary water group pickup ions exceeding 1keV. Increased charge exchange reactions between solar wind ions and cometary neutrals also indicate increased upstream neutral populations consistent with enhanced SEP induced surface activity. In addition, the most intense parts of the event coincide with observations interpreted as an infant cometary bow shock, indicating that the SEPs may have enhanced the formation and/or intensified the observations. These solar transient events may also have pushed the cometopause closer to the nucleus.We track and discuss characteristics of the SEP event using remote observations by SOHO, WIND and GOES at the Sun, in-situ measurements at STEREO A, Mars and Rosetta, and ENLIL modeling. Based on its relatively prolonged duration, gradual and anisotropic nature and broad angular spread in the heliosphere, we determine the main particle acceleration source to be a distant ICME which emerged from the Sun on March 6th 2015 and was detected locally in the Martian ionosphere but was never encountered by 67P directly. The ICME’s shock produced SEPs for several days which traveled to the in-situ observation sites via magnetic field line connections.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view