SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turenne Diego) "

Sökning: WFRF:(Turenne Diego)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engel, Robin Y., et al. (författare)
  • Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
  • 2020
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 10:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Featured Application Exploiting the full flux and temporal resolution of SASE-FELs for highly sensitive X-ray absorption measurements. X-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump-probe experiments requires high sensitivity to small changes in the spectra which in turn necessitates the brilliance of free electron laser (FEL) pulses. However, due to the fluctuating spectral content of pulses generated by self-amplified spontaneous emission (SASE), FEL experiments often struggle to reach the full sensitivity and time-resolution that FELs can in principle enable. Here, we implement a setup which solves two common challenges in this type of spectroscopy using FELs: First, we achieve a high spectral resolution by using a spectrometer downstream of the sample instead of a monochromator upstream of the sample. Thus, the full FEL bandwidth contributes to the measurement at the same time, and the FEL pulse duration is not elongated by a monochromator. Second, the FEL beam is divided into identical copies by a transmission grating beam splitter so that two spectra from separate spots on the sample (or from the sample and known reference) can be recorded in-parallel with the same spectrometer, enabling a spectrally resolved intensity normalization of pulse fluctuations in pump-probe scenarios. We analyze the capabilities of this setup around the oxygen K- and nickel L-edges recorded with third harmonic radiation of the free electron laser in Hamburg (FLASH), demonstrating the capability for pump-probe measurements with sensitivity to reflectivity changes on the per mill level.
  •  
2.
  • Grånäs, Oscar, 1979-, et al. (författare)
  • Ultrafast modification of the electronic structure of a correlated insulator
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A nontrivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use of electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the time scales and energies involved in using quantum effects for possible applications. We use element-specific transient x-ray absorption spectroscopy and high-harmonic generation to measure the response to ultrashort off-resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V/angstrom lead to no detectable changes in the correlated Ni 3d orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first-principles theory. Our results highlight the importance of retardation effects in electronic screening and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operation.
  •  
3.
  • Makino, Hitoshi, et al. (författare)
  • A study on the relationship of magnetic moments orientation in L10FePt network nanostructured film by electron energy-loss magnetic chiral dichroism using semi-core excitation spectra
  • 2022
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier. - 0304-8853 .- 1873-4766. ; 558
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we applied electron energy-loss magnetic chiral dichmism (EMCD), an electron counterpart of X-ray magnetic circular dichmism (XMCD), to a network nanostructured FePt L1(0) ordered alloy film to examine the relative orientation of magnetic moments between neighboring Fe and Pt atoms using the Fe-M-2,M-3, Pt-O-2,O-3, and Pt-N-6,N-7 semi-core excitation spectra with transmission electron microscopy and electron energy-loss spectroscopy. EMCD signals were successfully extracted from a large number of spectra using a dedicated data analysis procedure to obtain sufficient noise statistics. Results showed that the relative sign relation of the EMCD signals between the Fe and Pt absorption edges was consistent with that of the theoretical dielectric tensor while assuming that parallel magnetic moments exist between neighboring Fe and Pt. We believe the results of this study can be applied to alloys with different nanostructures to determine whether the spin configuration depends on the size and geometry of the nanostructures.
  •  
4.
  •  
5.
  • Turenne, Diego, et al. (författare)
  • Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub–10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices. 
  •  
6.
  • Turenne, Diego, 1993- (författare)
  • Ultrafast interactions between electrons, spin, and lattice in Iron-Platinum nanoparticles
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Since its discovery, great work has been done to uncover the nature of the ultrafast demagnetization process. However, the key question of how the angular momentum is transferred away from the spin system remains unanswered. This thesis advances a small piece of the puzzle by uncovering ultrafast phenomena in magnetic FePt nanoparticles.This work uses ultrafast electron diffraction to demonstrate that energy is transferred from the electronic system to the two atomic sub-lattices inhomogeneously. Further investigation proves a preferred transfer of energy to high-energy modes in the Brillouin zone boundary. To this date, this is the first ultrafast pump-probe study that decouples the atomic motion of different elemental species inside a crystal. This opens the door for new avenues of investigation for diatomic materials by taking advantage of all the available reciprocal space in a diffraction experiment.A complementary view on the magnetization dynamics from experiments in free electron laser sources shows the emergence of a magnetic soliton generated after completely quenching the magnetization in FePt nanoparticles. This magnetic soliton is exceptionally small, under 10 nm, and has a high frequency near the THz range. This discovery makes it a potential starting point for developing new devices for information processing technology. In addition, the magnetization of the ground state of FePt nanoparticles was imaged using coherent diffraction imaging along with circularly polarized X-rays. This experiment opens the path to new methods for probing the magnetization within nanoparticles, potentially allowing for a better understanding of the internal fields that govern the magnetization dynamics. 
  •  
7.
  • Vaskivskyi, Igor, et al. (författare)
  • Element-Specific Magnetization Dynamics in Co-Pt Alloys Induced by Strong Optical Excitation
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:21, s. 11714-11721
  • Tidskriftsartikel (refereegranskat)abstract
    • Ever since its first observation, the microscopic origin of ultrafast magnetization dynamics has been actively debated. Even more questions arise when considering composite materials featuring a combination of intrinsic and proximity-induced magnetic moments. Currently, it is unknown whether the specific ultrafast dynamics of different sublattices in the popular ferromagnets consisting of 3d (Co, Fe) and 4d, 5d (Pd, Pt) transition metals are playing a crucial role in various effects, including all-optical magnetization switching. Here we investigate the element-specific dynamics of Co-Pt alloys on femtosecond and picosecond time scales using magneto-optical spectroscopy in the extended ultraviolet (EUV) region. Our results reveal that despite the proximity-induced nature of the magnetization of Pt atoms, the two sublattices in the alloy can have different responses to the optical excitation featuring distinct demagnetization rates. Additionally we show that it is important to consider the modification of magnetic anisotropy in opto-magnetic experiments as the vast majority of them are sensitive only to a single projection of the magnetic moment on the predefined axis, which may lead to experimental artifacts.
  •  
8.
  • Wang, Xiaocui, et al. (författare)
  • Ultrafast manipulation of the NiO antiferromagnetic order via sub-gap optical excitation
  • 2022
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 237:0, s. 300-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge-transfer insulator NiO to demonstrate that 1.5 eV sub-gap optical excitation leads to a renormalised NiO band-gap in combination with a significant reduction of the antiferromagnetic order. We employ element-specific X-ray reflectivity at the FLASH free-electron laser to demonstrate the reduction of the upper band-edge at the O 1s-2p core-valence resonance (K-edge) whereas the antiferromagnetic order is probed via X-ray magnetic linear dichroism (XMLD) at the Ni 2p-3d resonance (L-2-edge). Comparing the transient XMLD spectral line shape to ground-state measurements allows us to extract a spin temperature rise of 65 +/- 5 K for time delays longer than 400 fs while at earlier times a non-equilibrium spin state is formed. We identify transient mid-gap states being formed during the first 200 fs accompanied by a band-gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band gap.
  •  
9.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative examples, providing an ideal test-bed for operation at megahertz rates. Nevertheless, our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. 
  •  
10.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
11.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond optical pumping of magnetic materials has been used to achieve ultrafast switching and recently to nucleate symmetry-broken magnetic states. However, when the magnetic order parameter already presents a broken-symmetry state, such as a domain pattern, the dynamics are poorly understood and consensus remains elusive. Here, we resolve the controversies in the literature by studying the ultrafast response of magnetic domain patterns with varying degrees of translation symmetry with ultrafast x-ray resonant scattering. A data analysis technique is introduced to disentangle the isotropic and anisotropic components of the x-ray scattering. We find that the scattered intensity exhibits a radial shift restricted to the isotropic component, indicating that the far-from-equilibrium magnetization dynamics are intrinsically related to the spatial features of the domain pattern. Our results suggest alternative pathways for the spatiotemporal manipulation of magnetism via far-from-equilibrium dynamics and by carefully tuning the ground-state magnetic textures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy