SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tyagi R) "

Search: WFRF:(Tyagi R)

  • Result 1-26 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  •  
4.
  • Kollhoff, A., et al. (author)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
5.
  • Allen, R. C., et al. (author)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
6.
  • Aran, A., et al. (author)
  • Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter : The ion event on 19 June 2020
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. In mid-June 2020, the Solar Orbiter (SolO) mission reached its first perihelion at 0.51 au and started its cruise phase, with most of the in situ instruments operating continuously.Aims. We present the in situ particle measurements of the first proton event observed after the first perihelion obtained by the Energetic Particle Detector (EPD) suite on board SolO. The potential solar and interplanetary (IP) sources of these particles are investigated.Methods. Ion observations from similar to 20 keV to similar to 1 MeV are combined with available solar wind data from the Radio and Plasma Waves (RPW) instrument and magnetic field data from the magnetometer on board SolO to evaluate the energetic particle transport conditions and infer the possible acceleration mechanisms through which particles gain energy. We compare > 17-20 MeV ion count rate measurements for two solar rotations, along with the solar wind plasma data available from the Solar Wind Analyser (SWA) and RPW instruments, in order to infer the origin of the observed galactic cosmic ray (GCR) depressions.Results. The lack of an observed electron event and of velocity dispersion at various low-energy ion channels and the observed IP structure indicate a local IP source for the low-energy particles. From the analysis of the anisotropy of particle intensities, we conclude that the low-energy ions were most likely accelerated via a local second-order Fermi process. The observed GCR decrease on 19 June, together with the 51.8-1034.0 keV nuc(-1) ion enhancement, was due to a solar wind stream interaction region (SIR). The observation of a similar GCR decrease in the next solar rotation favours this interpretation and constitutes the first observation of a recurrent GCR decrease by SolO. The analysis of the recurrence times of this SIR suggests that it is the same SIR responsible for the He-4 events previously measured in April and May. Finally, we point out that an IP structure more complex than a common SIR cannot be discarded, mainly due to the lack of solar wind temperature measurements and the lack of a higher cadence of solar wind velocity observations.
  •  
7.
  • Kumar, R. R., et al. (author)
  • Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material
  • 2022
  • In: Journal of Energy Storage. - : Elsevier BV. - 2352-152X. ; 55
  • Journal article (peer-reviewed)abstract
    • Phase change materials (PCMs) are effective thermal energy storage materials; however, their low thermal conductivity nature tends to affect heat storage performance. Salt hydrate being inexpensive, incombustible and ensuring high phase change enthalpy, are highly attractive for energy storage. The potential of multi-walled carbon nanotubes (MWCNTs) in improving the thermophysical properties of salt hydrate PCMs makes it a hotspot of current research. Therefore, in this research article, MWCNTs and functionalized multi-walled carbon nanotubes (FMWCNTs) nanoparticles were dispersed with inorganic salt hydrate at different concentrations (0.3, 0.5, and 1.0 wt%), in the presence and absence of surfactant. The role of surfactant with salt hydrate PCM has been discussed extensively. The results obtained have ensured an enhancement in melting enthalpy of prepared composites by 4.92 %, and 28.5 % for 0.5 wt% MWCNT dispersed PCM (SHM0.5), and 0.5 wt% FMWCNT dispersed PCM (SHF0.5), respectively. Furthermore, the maximum thermal conductivity was enhanced by 50.0 % and 84.78 % for 0.5 wt% MWCNT dispersed PCM with surfactant (SHMS0.5), and SHF0.5 respectively, compared to salt hydrate PCM. From the improvement in thermal conductivity, light absorptance, thermal stability, latent heat, and chemical stability, it is evident that the prepared nanocomposite is a potential candidate for solar thermal energy storage applications.
  •  
8.
  • Arunachalam, Natarajan, et al. (author)
  • Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India.
  • 2012
  • In: Pathogens and global health. - 2047-7732. ; 106:8, s. 488-96
  • Journal article (peer-reviewed)abstract
    • Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti.
  •  
9.
  •  
10.
  •  
11.
  • Araujo, Carlos Moyses, et al. (author)
  • Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites
  • 2014
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 4, s. 4686-
  • Journal article (peer-reviewed)abstract
    • We report an unusual robust ferromagnetic order above room temperature upon amorphization of perovskite [YCrO3] in pulsed laser deposited thin films. This is contrary to the usual expected formation of a spin glass magnetic state in the resulting disordered structure. To understand the underlying physics of this phenomenon, we combine advanced spectroscopic techniques and first-principles calculations. We find that the observed order-disorder transformation is accompanied by an insulator-metal transition arising from a wide distribution of Cr-O-Cr bond angles and the consequent metallization through free carriers. Similar results also found in YbCrO3-films suggest that the observed phenomenon is more general and should, in principle, apply to a wider range of oxide systems. The ability to tailor ferromagnetic order above room temperature in oxide materials opens up many possibilities for novel technological applications of this counter intuitive effect.
  •  
12.
  •  
13.
  •  
14.
  • Jayakumar, O. D., et al. (author)
  • 1D Morphology Stabilization and Enhanced Magnetic Properties of Co : ZnO Nanostructures on Codoping with Li: A Template-Free Synthesis
  • 2009
  • In: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 9:10, s. 4450-4455
  • Journal article (peer-reviewed)abstract
    • ID natiostructures of Zn1-xCoxO (x = 0, 0.03 and 0.05) and Co and Li codoped ZnO (Zn0.85Li0.10Co0.05O) were prepared by a soft chemical method. We report a very interesting observation of morphological control and transformation of ZnO nanorods to spherical particles induced by Co substitution. It is also remarkable to note that the morphology completely reverts back to rod shape by Li incorporation. In addition to this unusual observation, the Li incorporation enhances the room-temperature ferromagnetic (RTFM) properties. These experimental observations are well-supported by theory work as well. These results are significant, as the I D RTFM will have implications in spintronic devices.
  •  
15.
  • Jayakumar, O. D., et al. (author)
  • Enhancement of ferromagnetic properties in Zn0.95Co0.05O nanoparticles by indium codoping : An experimental and theoretical study
  • 2010
  • In: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 97:23, s. 232510-
  • Journal article (peer-reviewed)abstract
    • Nanoparticles of Zn0.95-xCo0.05InxO (x = 0.0 to 0.07) were synthesized by the pyrolitic reaction of sol-gels obtained from respective metal precursors. X-ray diffraction and high-resolution transmission electron microscopy studies confirm the formation of impurity-free wurtzite type ZnO structure for all the compositions. While pristine ZnO is diamagnetic, Zn0.95Co0.05O nanoparticles show weak paramagnetic behavior at room temperature. When "In." is codoped with Co with x = 0.0 to 0.07 in Zn0.95-xCo0.05InxO, a systematic increase in magnetic moment is observed up to x = 0.07. First-principles modeling supports that the ferromagnetic phase become more favorable at higher indium doping concentrations.
  •  
16.
  • Jayakumar, O. D., et al. (author)
  • Experimental and theoretical investigations on magnetic behavior of (Al,Co) co-doped ZnO nanoparticles
  • 2010
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 2:8, s. 1505-1511
  • Journal article (peer-reviewed)abstract
    • We present the structural and magnetic properties of Zn0.95-xCo0.05AlxO (x = 0.0 to 0.1) nanoparticles, synthesized by a novel sol-gel route followed by pyrolysis. Powder X-ray diffraction data confirms the formation of a single phase wurtzite type ZnO structure for all the compositions. The Zn0.95Co0.05O nanoparticles show diamagnetic behavior at room temperature. However, when Al is co-doped with Co with x = 0.0 to 0.10 in Zn0.95-xCo0.05AlxO, a systematic increase in ferromagnetic moment is observed up to x = 0.07 at 300 K. Above x = 0.07 (e.g. for x = 0.10) a drastic decrease in ferromagnetic nature is observed which is concomitant with the segregation of poorly crystalline Al rich ZnO phase as evidenced from TEM studies. Theoretical studies using density functional calculations on Zn0.95-xCo0.05AlxO suggest that the partial occupancy of S2 states leads to an increased double exchange interaction favoring the ferromagnetic ground states. Such ferromagnetic interactions are favorable beyond a threshold limit. At a high level doping of Al, the exchange splitting is reduced, which suppresses the ferromagnetic ordering.
  •  
17.
  • Jayakumar, O. D., et al. (author)
  • Surfactant-induced enhanced room temperature ferromagnetism in Zn0.96Mn0.03Li0.01O nanoparticles : Prepared by solid-state pyrolitic reaction
  • 2007
  • In: Journal of Crystal Growth. - : Elsevier BV. - 0022-0248 .- 1873-5002. ; 307:2, s. 315-320
  • Journal article (peer-reviewed)abstract
    • We report the synthesis of nanoparticles of Zn0.96Mn0.03Li0.01O by a low-temperature solid-state pyrolitic reaction, followed by a surfactant-assisted calcination at 400 degrees C. The X-ray diffraction and transmission electron microscopy analyses showed the formation of impurity free nanocrystals of Mn doped Li co-cloped ZnO with wurtzite structure. XPS data revealed that Mn exists in + 2 oxidation state. DC magnetization measurements as a function of field and temperature showed enhanced room temperature ferromagnetism for the surfactant-treated Zn0:96Mn0.03Li0.01O. FMR signal observed in the EPR spectrum further confirmed its ferromagnetic nature.
  •  
18.
  • Jayakumar, O. D., et al. (author)
  • Tunable Ferromagnetism accompanied by Morphology Control in Li-doped Zn0.97Ni0.03O
  • 2010
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 114:41, s. 17428-17433
  • Journal article (peer-reviewed)abstract
    • We report morphological and ferromagnetic property control in ZnO nanorod structures by an optimum doping of Ni and Li. Nanostructures of Zn0.97-xNi0.03LixO (x = 0, 0.03, 0.05, 0.08, and 0.10) are prepared by a solvothermal method. High aspect ratio (5-15) ZnO nanorods transform to particles (with 1-3 aspect ratio) influenced by 3 at. % Ni substitution in ZnO (Zn0.97Ni0.03O). It is remarkable to note that the Zn1.97Ni0.03O particles completely retain the nanorod shape with significantly increased aspect ratio (15-30) when 3 at.c/a Li ions are codoped in (Zn0.99Li0.03Ni0.30O). Li substitution tits enhances ferromagnetism with largest magnetization (0.8 emu.g(-1)) observed for Zn0.94Li0.03Ni0.03O. For Li concentration >3 at.%, the aspect ratio as well as the magnetization decreased considerably. These experimental observations are explained by first-principles modeling. At low Li-on-Zn acceptor concentrations, the total magnetization is increased by lower Ni d-state populations, whereas at higher Li concentrations the population of ZnO host states decreases the ferromagnetism by induced magnetic moments on the oxygens. We discuss the significant implications of these results on the nanorods structures of room temperature ferromagnetic materials, which are expected to play pivotal role in developing spintronic devices.
  •  
19.
  • Khursheed, A., et al. (author)
  • Future liasing of the lockdown during COVID-19 pandemic : The dawn is expected at hand from the darkest hour
  • 2020
  • In: Groundwater for Sustainable Development. - : Elsevier B.V.. - 2352-801X. ; 11
  • Journal article (peer-reviewed)abstract
    • The lockdown during COVID-19 pandemic has converted the world into new experimental laboratories, which may reveal temporal or spatial comparative analysis data. However, some startling information is gathered in terms of reduced premature mortality cases associated with air and water quality improvement, enhanced e-learning on a broader platform, work from home, and successful e-health. The decline in vehicular density on roads and congestion leads to reduced energy consumption and associated greenhouse gases (GHG) and other pollutants emission. The lockdown has also been identified as a possible emergency measure to combat severe air pollution episodes. Similarly, industrial pollution has been recognized as one of the primary causes of water resource pollution and would, therefore, bring change in policy vis-à-vis groundwater pollution control. Our findings suggest that the results of successful e-learning and work from home would be a permanent shift from conventional modes in the near future due to a drastic reduction in socio-economic cost. Our critical analysis also highlights that with such temporary lockdown measures acute/chronic ill-effects of anthropogenic perturbations on planet earth can be effectively estimated through sociocultural, socioeconomical and socio-political/sociotechnological nexus. 
  •  
20.
  • Nagar, Sandeep, et al. (author)
  • Room Temperature Ferromagnetism and Lack of Ferroelectricity in Thin Films of 'Biferroic?' YbCrO3
  • 2009
  • In: Novel Materials and Devices for Spintronics. - : Materials Research Society. - 9781605111568 ; , s. 163-168
  • Conference paper (peer-reviewed)abstract
    • Search for novel multi-functional materials, especially multiferroics, which are ferromagnetic above room temperature and at the same time exhibit a ferroelectric behavior much above room temperature, is an active topic of extensive studies today Ability to address an entity with an external field, laser beam, and also electric potential is a welcome challenge to develop multifunctional devices enabled by nanoscience While most of the studies to date have been on various forms of Bi and Ba based Ferrites, rare earth chromites are a new class of materials which appear to show some promise However m the powder and bulk form these materials are at best canted antiferromagnets with the magnetic transition temperatures much below room temperature In this presentation we show that thin films of YbCrO3 deposited by Pulsed Laser Deposition exhibit robust ferromagnetic properties above room temperature It is indeed a welcome surprise and a challenge to understand the evolution of above room temperature ferromagnetism in such a thin film The thin films are amorphous in contrast to the powder and bulk forms which are crystalline The magnetic properties are those of a soft magnet with low coercivity We present extensive investigations of the magnetic and ferroelectric properties, and spectroscopic studies using XAS techniques to understand the electronic states of the constituent atoms in this novel Chromite While the amorphous films are ferromagnetic much above room temperature, we show that any observation of ferroelectric property in these films is an artifact of a leaky highly resistive material
  •  
21.
  • Osoegawa, Kazutoyo, et al. (author)
  • Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop
  • 2019
  • In: Human Immunology. - : ELSEVIER SCIENCE INC. - 0198-8859 .- 1879-1166. ; 80:4, s. 228-236
  • Journal article (peer-reviewed)abstract
    • The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software.
  •  
22.
  • Tyagi, Bhishma, et al. (author)
  • Surface Energy Exchanges during Pre-monsoon Thunderstorm Activity over a Tropical Station Kharagpur
  • 2014
  • In: Pure and Applied Geophysics. - : Springer Science and Business Media LLC. - 0033-4553 .- 1420-9136. ; 171:7, s. 1445-1459
  • Journal article (peer-reviewed)abstract
    • In the present study an attempt has been made to understand the variation of surface energy fluxes such as net radiation, sensible, latent and soil heat during different epochs of thunderstorm activity at Kharagpur. The study also focuses in delineating the difference in the surface energy budget from the days of thunderstorm activity to fair weather days in the pre-monsoon months (April and May) which is locally known as thunderstorm season. For this purpose, experimental data obtained from the Severe Thunderstorms- Observations and Regional Modeling (STORM) programme during pre-monsoon months of 2007, 2009 and 2010 at Kharagpur (22A degrees 30'N, 87A degrees 20'E), West Bengal, India are used. The present study reveals quick response, in the order of a few days, in the variations of transport of energy fluxes at soil-atmosphere interface to the upper atmosphere vis-A -vis to the occurrence of thunderstorm activity. Rise of surface sensible heat flux to the level of surface latent heat flux a day or two before the occurrence of a thunderstorm has been identified as a precursor signal for the thunderstorm occurrence over Kharagpur. Distinguishable differences are found in the partitioning of the surface energy fluxes to that of net radiation between thunderstorm and non-thunderstorm days. The present study reveals more Bowen's ratio during thunderstorm days to that of nonthunderstorm days. These results are useful in validating mesoscale model simulations of thunderstorm activity.
  •  
23.
  •  
24.
  • Tyagi, Himanshu, et al. (author)
  • Introduction to Applications of Solar Energy
  • 2018. - 1
  • In: Applications of Solar Energy. - Singapore : Springer. - 9789811072055 - 9789811072062 ; , s. 3-10
  • Book chapter (peer-reviewed)
  •  
25.
  •  
26.
  • Varjani, Sunita, et al. (author)
  • Preface
  • 2022
  • In: Biomass, Biofuels, Biochemicals. - : Elsevier. - 9780323885119 ; , s. xiii-xv
  • Book chapter (other academic/artistic)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-26 of 26
Type of publication
journal article (19)
book chapter (4)
editorial collection (1)
conference paper (1)
research review (1)
Type of content
peer-reviewed (25)
other academic/artistic (1)
Author/Editor
Singh, S (4)
Vecchio, A. (3)
Martin, C (3)
Evans, V (3)
Persson, Clas (3)
O'Brien, H (3)
show more...
Kulkarni, S. R. (3)
Khotyaintsev, Yuri V ... (3)
Seifert, H. (3)
Maksimovic, M. (3)
Allen, R. C. (3)
Cernuda, I (3)
Berger, L. (3)
Xu, Z. G. (3)
von Forstner, J. L. ... (3)
Rodriguez-Pacheco, J ... (3)
Wimmer-Schweingruber ... (3)
Ho, G. C. (3)
Mason, G. M. (3)
Angelini, V (3)
Boden, S. (3)
Eldrum, S. (3)
Lara, F. Espinosa (3)
Gomez-Herrero, R. (3)
Kollhoff, A. (3)
Wang, Mei (2)
Hanson, C (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
Schellenberg, J (2)
Ahuja, Rajeev (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Belova, Lyubov (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Andrews, G. B. (2)
Bale, S. D. (2)
Boettcher, S. , I (2)
show less...
University
Royal Institute of Technology (8)
Uppsala University (6)
Karolinska Institutet (6)
Högskolan Dalarna (4)
University of Gothenburg (3)
Stockholm University (2)
show more...
Linköping University (2)
Lund University (2)
Swedish University of Agricultural Sciences (2)
Umeå University (1)
University of Borås (1)
show less...
Language
English (26)
Research subject (UKÄ/SCB)
Engineering and Technology (9)
Natural sciences (8)
Medical and Health Sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view