SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tzanakaki A) "

Sökning: WFRF:(Tzanakaki A)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brehony, Carina, et al. (författare)
  • Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development
  • 2014
  • Ingår i: Clinical and Vaccine Immunology. - : American Society for Microbiology. - 1556-6811 .- 1556-679X. ; 21:6, s. 847-853
  • Tidskriftsartikel (refereegranskat)abstract
    • New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and >= 25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.
  •  
3.
  •  
4.
  • Taha, Muhamed-Kheir, et al. (författare)
  • Defining the breakpoint for resistance to rifampicin in Neisseria meningitidis by rpoB sequencing
  • 2009
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Clinical isolates of Neisseria meningitidis resistant to rifampicin are important to identify asthey lead to failure of chemoprophylaxis of meningococcal disease. However, theidentification of these isolates is hindered by the absence of a harmonized breakpoint despiteefforts of standardization. In the present study, a large number (n=352) of clinical N.meningitidis isolates from 12 mainly European countries and spanning over 25 years (1984 to2009) were examined. The collection comprised all clinical isolates with MIC 0.25 mg/lreceived by the national reference laboratories for meningococci in the participating countries(n=161). In addition, representative isolates displaying MIC of rifampicin <0.25 mg/l wereexamined (n=191). Phenotyping and genotyping of isolates were performed and a 660 bpDNA fragment of the rpoB gene was sequenced in all the included isolates. Sequencesdiffering by at least one nucleotide were defined as a unique rpoB allele (n=55). Geometricmeans of MIC were calculated for isolates displaying the same allele. All the clinical isolatesdisplaying MIC >1 mg/l of rifampicin possessed rpoB alleles with critical mutations (in total21 alleles), resulting in substitutions at the codon H552 and less frequently at nearby codons(S548 and S557). These alterations were absent in the alleles (n=34) found in all isolates withMIC 1 mg/l. Based on these findings, rifampicin susceptible isolates could be defined asthose with MIC 1 mg/l. A new web site was created based on the data from this work (http://neisseria.org/nm/typing/rpoB). The rifampicin resistant isolates belonged to diversegenetic lineages and provoked lower bacteremia levels in mice. This biological cost mayexplain the non-expansion of the rifampicin resistant isolates.
  •  
5.
  • Taha, Muhamed-Kheir, et al. (författare)
  • Interlaboratory Comparison of PCR-Based Identification and Genogrouping of Neisseria meningitidis
  • 2005
  • Ingår i: Journal of Clinical Microbiology. - 0095-1137 .- 1098-660X. ; 43:1, s. 144-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty clinical samples (18 cerebrospinal fluid samples and 2 articular fluid samples) were sent to 11 meningococcus reference centers located in 11 different countries. Ten of these laboratories are participating in the EU-MenNet program (a European Union-funded program) and are members of the European Monitoring Group on Meningococci. The remaining laboratory was located in Burkina Faso. Neisseria meningitidis was sought by detecting several meningococcus-specific genes (crgA, ctrA, 16S rRNA, and porA). The PCR-based nonculture method for the detection of N. meningitidis gave similar results between participants with a mean sensitivity and specificity of 89.7 and 92.7%, respectively. Most of the laboratories also performed genogrouping assays (siaD and mynB/sacC). The performance of genogrouping was more variable between laboratories, with a mean sensitivity of 72.7%. Genogroup B gave the best correlation between participants, as all laboratories routinely perform this PCR. The results for genogroups A and W135 were less similar between the eight participating laboratories that performed these PCRs.
  •  
6.
  • Jirattigalachote, Amornrat, et al. (författare)
  • Impairment aware routing with service differentiation in heterogeneous WDM networks
  • 2009
  • Ingår i: Network Architectures, Management, and Applications VII. - : SPIE - International Society for Optical Engineering. - 9780819480354 ; , s. 763307-
  • Konferensbidrag (refereegranskat)abstract
    • In transparent Wavelength Division Multiplexing (WDM) networks, the signal is transported from source to destination in the optical domain through all-optical channels, or lightpaths. A lightpath may traverse several fiber segments and optical components that in general degrade the optical signal. This effect introduces the need for considering physical layer impairments during the connection-provisioning phase. Physical layer impairments can be divided into linear and non-linear. Both types of impairments are highly dependent on the fiber characteristics, which in turn are sensitive to length, temperature and age. A close look at the fiber infrastructure of today's network operators reveals a situation where old and newly deployed fibers coexist in the network. This heterogeneous fiber plant presents a challenge. A tradeoff should be found between the QoS requirements of connection requests and the use of the available (old and new) network resources. This calls for a provisioning mechanism able to adapt to the various fiber composition scenarios. In parallel, given the need for service differentiation, the authors recently proposed an Impairment Constraint Based Routing (ICBR) algorithm, referred to as ICBR-Diff, supporting differentiation of services at the BER (Bit Error Rate) level in a network with a homogeneous fiber infrastructure. In this paper the ICBR-Diff algorithm is extended to heterogeneous network; particularly, it is evaluated in WDM networks with fiber links having varying Polarization Mode Dispersion characteristics, i.e., with old and new fiber coexisting. Simulation results show that the ICBR-Diff algorithm exhibits high adaptability in a heterogeneous fiber composition scenario. This translates into improved performance in terms of blocking probability, when compared to traditional impairment aware routing algorithms.
  •  
7.
  •  
8.
  • Wosinska, Lena, et al. (författare)
  • Lightpath routing considering differentiated physical layer constraints in transparent WDM networks
  • 2009
  • Ingår i: Network Architectures, Management, and Applications VII. - : SPIE. - 9780819480354 ; , s. 76331D-
  • Konferensbidrag (refereegranskat)abstract
    • Wavelength division multiplexing (WDM) technology is considered to be the ultimate answer to the rapidly growing capacity demand of next generation networks. Many routing and wavelength assignment (RWA) algorithms, proposed for lightpath provisioning, base their routing decisions on the availability of network resources, and assume that optical fibers and components are ideal. In reality, physical impairments degrade the quality of the optical signal propagating through fiber segments and optical components. To cope with this problem, Impairment Constraint Based Routing (ICBR) algorithms, that consider physical impairments during connection provisioning, are currently proposed to prevent selecting lightpaths with poor signal quality. However, these algorithms support only a single (highest) quality of transmission threshold, the same one for all connection requests. This does not fit well with the variety of services, with potentially disparate QoS requirements, that the next generation networks are expected to support. Consequently, the efficiency of network resource utilization is reduced. This paper demonstrates that a significant improvement, in terms of blocking probability, can be achieved when using an ICBR algorithm with differentiated physical layer constraints. Performance is compared with conventional impairment aware routing approaches when unprotected, shared path protected (SPP), and dedicated path protected (DPP) connection requests are considered. The achieved improvement is a result of more efficient resource utilization as unnecessary connection blocking can be avoided by selecting network resources offering optical signal quality that is "good enough" to satisfy a specific connection request.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy