SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ullah Saif) "

Sökning: WFRF:(Ullah Saif)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mushtaq, Irrum, et al. (författare)
  • Ferrocene-Based Terpolyamides and Their PDMS-Containing Block Copolymers: Synthesis and Physical Properties
  • 2022
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 14:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic polyamides are well-known as high-performance materials due to their outstanding properties making them useful in a wide range of applications. However, their limited solubility in common organic solvents restricts their processability and becomes a hurdle in their applicability. This study is focused on the synthesis of processable ferrocene-based terpolyamides and their polydimethylsiloxane (PDMS)-containing block copolymers, using low-temperature solution polycondensation methodology. All the synthesized materials were structurally characterized using FTIR and 1H NMR spectroscopic techniques. The ferrocene-based terpolymers and block copolymers were soluble in common organic solvents, while the organic analogs were found only soluble in sulfuric acid. WXRD analysis showed the amorphous nature of the materials, while the SEM analysis exposed the modified surface of the ferrocene-based block copolymers. The structure–property relationship of the materials was further elucidated by their water absorption and thermal behavior. These materials showed low to no water absorption along with their high limiting oxygen index (LOI) values depicting their good flame-retardant behavior. DFT studies also supported the role of various monomers in the polycondensation reaction where the electron pair donation from HOMO of diamine monomer to the LUMO of acyl chloride was predicted, along with the calculation of various other parameters of the representative terpolymers and block copolymers.
  •  
2.
  • Alvarez, E. M., et al. (författare)
  • The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet Oncology. - : Elsevier BV. - 1470-2045. ; 23:1, s. 27-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
3.
  •  
4.
  • Micah, Angela E., et al. (författare)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Forskningsöversikt (refereegranskat)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
5.
  • Shah, Faiz Ullah, et al. (författare)
  • Solid-state 13C, 15N and 29Si NMR characterization of block copolymers with CO2 capture properties
  • 2016
  • Ingår i: Magnetic Resonance in Chemistry. - : Wiley. - 0749-1581 .- 1097-458X. ; 54:9, s. 734-739
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural abundance solid-state multinuclear (13C, 15N and 29Si) cross-polarization magic-angle-spinning NMR was used to study structures of three block copolymers based on polyamide and dimethylsiloxane and two polyamides, one of which including ferrocene in its structure. Assignment of most of the resonance lines in 13C, 15N and 29Si cross-polarization magic angle-spinning NMR spectra were suggested. A comparative analysis of 13C isotropic chemical shifts of polyamides with and without ferrocene has revealed a systematic shift towards higher δ -values (de-shielding) explained as the incorporation of paramagnetic ferrocene into the polyamide backbone. In addition, the 13C NMR resonance lines for ferrocene-based polyamide were significantly broadened, because of paramagnetic effects from ferrocene incorporated in the structure of this polyamide polymer. Single resonance lines with chemical shifts ranging from 88.1 to 91.5ppm were observed for 15N sites in all of studied polyamide samples. 29Si chemical shifts were found to be around 22.4ppm in polydimethylsiloxane samples that falls in the range of chemical shifts for alkylsiloxane compounds. The CO2 capture performance of polyamide-dimethylsiloxane-based block copolymers was measured as a function of temperature and pressure. The data revealed that these polymeric materials have potential to uptake CO2 (up to 9.6 cm3 g1) at ambient pressures and in the temperature interval 30–40 °C. Copyright ©2016 John Wiley & Sons, Ltd.
  •  
6.
  • D'Orazio, Paola, et al. (författare)
  • Catalyzing the transformation to sustainable finance
  • 2023
  • Ingår i: One Earth. - : Elsevier. - 2590-3330 .- 2590-3322. ; 6:10, s. 1271-1276
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The modern financial system has enabled a globalized economy by leveraging investments for production, consumption, and the trade of goods and services. However, this system has also engendered a series of wicked problems and externalities, including but not limited to climate change, environmental pollution, biodiversity loss, and inequalities that significantly challenge the well-being of nature and people. The system is also currently inadequate with regards to financing sustainable development, as recognized by the 2015 Addis Ababa Action Agenda. This Voices asks: what must be done to transform today's financial system for a sustainable future?
  •  
7.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of stroke and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2021
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:10, s. 795-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% [10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% [5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million [6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million [2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million [1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million [67.7-90.8] DALYs or 55.5% [48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million [22.3-48.6] DALYs or 24.3% [15.7-33.2]), high fasting plasma glucose (28.9 million [19.8-41.5] DALYs or 20.2% [13.8-29.1]), ambient particulate matter pollution (28.7 million [23.4-33.4] DALYs or 20.1% [16.6-23.0]), and smoking (25.3 million [22.6-28.2] DALYs or 17.6% [16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.
  •  
8.
  •  
9.
  • Khan, Muhammad Saif Ullah, et al. (författare)
  • Three-Dimensional Reconstruction from a Single RGB Image Using Deep Learning: A Review
  • 2022
  • Ingår i: Journal of Imaging. - : MDPI. - 2313-433X. ; 8:9
  • Forskningsöversikt (refereegranskat)abstract
    • Performing 3D reconstruction from a single 2D input is a challenging problem that is trending in literature. Until recently, it was an ill-posed optimization problem, but with the advent of learning-based methods, the performance of 3D reconstruction has also significantly improved. Infinitely many different 3D objects can be projected onto the same 2D plane, which makes the reconstruction task very difficult. It is even more difficult for objects with complex deformations or no textures. This paper serves as a review of recent literature on 3D reconstruction from a single view, with a focus on deep learning methods from 2018 to 2021. Due to the lack of standard datasets or 3D shape representation methods, it is hard to compare all reviewed methods directly. However, this paper reviews different approaches for reconstructing 3D shapes as depth maps, surface normals, point clouds, and meshes; along with various loss functions and metrics used to train and evaluate these methods.
  •  
10.
  •  
11.
  •  
12.
  • Rahman, Mohammad Azazur, et al. (författare)
  • A Proposed Combined Renewable Energy System for Train
  • 2018
  • Ingår i: Conference Proceedings - 2018 Paris. - : IEOM Society International. ; , s. 1848-1855
  • Konferensbidrag (refereegranskat)abstract
    • Renewable energy is most preferable method in the world to produce electrical power because of its low cost and eco-friendly characteristics. Wind and solar are the most significant source of renewable energy. By using those renewable energy in train, fuel consumption and carbon dioxide emission will be reduced. The amount of power which will be produced from those two types of renewable energies in train is shown by theoretical analysis. In this paper, rate of producing energy, economic benefits are shown.
  •  
13.
  • Saif-Ul-Allah, Muhammad Waqas, et al. (författare)
  • Computationally Inexpensive 1D-CNN for the Prediction of Noisy Data of NOx Emissions From 500 MW Coal-Fired Power Plant
  • 2022
  • Ingår i: Frontiers in Energy Research. - : FRONTIERS MEDIA SA. - 2296-598X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Coal-fired power plants have been used to meet the energy requirements in countries where coal reserves are abundant and are the key source of NOx emissions. Owing to the serious environmental and health concerns associated with NOx emissions, much work has been carried out to reduce NOx emissions. Sophisticated artificial intelligence (AI) techniques have been employed during the past few decades, such as least-squares support vector machine (LSSVM), artificial neural networks (ANN), long short-term memory (LSTM), and gated recurrent unit (GRU), to develop the NOx prediction model. Several studies have investigated deep neural networks (DNN) models for accurate NOx emission prediction. However, there is a need to investigate a DNN-based NOx prediction model that is accurate and computationally inexpensive. Recently, a new AI technique, convolutional neural network (CNN), has been introduced and proven superior for image class prediction accuracy. According to the best of the author's knowledge, not much work has been done on the utilization of CNN on NOx emissions from coal-fired power plants. Therefore, this study investigated the prediction performance and computational time of one-dimensional CNN (1D-CNN) on NOx emissions data from a 500 MW coal-fired power plant. The variations of hyperparameters of LSTM, GRU, and 1D-CNN were investigated, and the performance metrics such as RMSE and computational time were recorded to obtain optimal hyperparameters. The obtained optimal values of hyperparameters of LSTM, GRU, and 1D-CNN were then employed for models' development, and consequently, the models were tested on test data. The 1D-CNN NOx emission model improved the training efficiency in terms of RMSE by 70.6% and 60.1% compared to LSTM and GRU, respectively. Furthermore, the testing efficiency for 1D-CNN improved by 10.2% and 15.7% compared to LSTM and GRU, respectively. Moreover, 1D-CNN (26 s) reduced the training time by 83.8% and 50% compared to LSTM (160 s) and GRU (52 s), respectively. Results reveal that 1D-CNN is more accurate, more stable, and computationally inexpensive compared to LSTM and GRU on NOx emission data from the 500 MW power plant.
  •  
14.
  • Sheena, B. S., et al. (författare)
  • Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet Gastroenterology & Hepatology. - : Elsevier BV. - 2468-1253. ; 7:9, s. 796-829
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Combating viral hepatitis is part of the UN Sustainable Development Goals (SDGs), and WHO has put forth hepatitis B elimination targets in its Global Health Sector Strategy on Viral Hepatitis (WHO-GHSS) and Interim Guidance for Country Validation of Viral Hepatitis Elimination (WHO Interim Guidance). We estimated the global, regional, and national prevalence of hepatitis B virus (HBV), as well as mortality and disability-adjusted life-years (DALYs) due to HBV, as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. This included estimates for 194 WHO member states, for which we compared our estimates to WHO elimination targets. Methods The primary data sources were population-based serosurveys, claims and hospital discharges, cancer registries, vital registration systems, and published case series. We estimated chronic HBV infection and the burden of HBV-related diseases, defined as an aggregate of cirrhosis due to hepatitis B, liver cancer due to hepatitis B, and acute hepatitis B. We used DisMod-MR 2.1, a Bayesian mixed-effects meta-regression tool, to estimate the prevalence of chronic HBV infection, cirrhosis, and aetiological proportions of cirrhosis. We used mortality-to-incidence ratios modelled with spatiotemporal Gaussian process regression to estimate the incidence of liver cancer. We used the Cause of Death Ensemble modelling (CODEm) model, a tool that selects models and covariates on the basis of out-ofsample performance, to estimate mortality due to cirrhosis, liver cancer, and acute hepatitis B. Findings In 2019, the estimated global, all-age prevalence of chronic HBV infection was 4 center dot 1% (95% uncertainty interval [UI] 3 center dot 7 to 4 center dot 5), corresponding to 316 million (284 to 351) infected people. There was a 31 center dot 3% (29 center dot 0 to 33 center dot 9) decline in all-age prevalence between 1990 and 2019, with a more marked decline of 76 center dot 8% (76 center dot 2 to 77 center dot 5) in prevalence in children younger than 5 years. HBV-related diseases resulted in 555 000 global deaths (487 000 to 630 000) in 2019. The number of HBV-related deaths increased between 1990 and 2019 (by 5 center dot 9% [-5 center dot 6 to 19 center dot 2]) and between 2015 and 2019 (by 2 center dot 9% [-5 center dot 9 to 11 center dot 3]). By contrast, all-age and age-standardised death rates due to HBV-related diseases decreased during these periods. We compared estimates for 2019 in 194 WHO locations to WHO-GHSS 2020 targets, and found that four countries achieved a 10% reduction in deaths, 15 countries achieved a 30% reduction in new cases, and 147 countries achieved a 1% prevalence in children younger than 5 years. As of 2019, 68 of 194 countries had already achieved the 2030 target proposed in WHO Interim Guidance of an all-age HBV-related death rate of four per 100 000. Interpretation The prevalence of chronic HBV infection declined over time, particularly in children younger than 5 years, since the introduction of hepatitis B vaccination. HBV-related death rates also decreased, but HBV-related death counts increased as a result of population growth, ageing, and cohort effects. By 2019, many countries had met the interim seroprevalence target for children younger than 5 years, but few countries had met the WHO-GHSS interim targets for deaths and new cases. Progress according to all indicators must be accelerated to meet 2030 targets, and there are marked disparities in burden and progress across the world. HBV interventions, such as vaccination, testing, and treatment, must be strategically supported and scaled up to achieve elimination.
  •  
15.
  • Ullah, Saif, et al. (författare)
  • Synergistic fire-retardancy properties of melamine coated ammonium poly(phosphate) in combination with rod-like mineral filler attapulgite for polymer-modified bitumen roofing membranes
  • 2020
  • Ingår i: Fire and Materials. - : John Wiley and Sons Ltd. - 0308-0501 .- 1099-1018. ; 44:7, s. 966-974
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel intumescent (carbonization, acid donor and foaming) fire retardant that mimics carbon nanotubes was introduced into bitumen roofing and characterized using cone calorimetry as the main analytical tool. The experimental results indicate that 18% (by mass) attapulgite mineral (ATTP) mixed with base bitumen decreased the peak heat release rate per unit area (pHRRPUA) by 10%. Further, incorporation of melamine coated ammonium polyphosphate (MAPP) decreased the pHRRPUA by 52% and a mixture of these (3:1, ATTP:MAPP) decreased the pHRRPUA by 25% as compared to adding CaCO3 as a filler. The residual mass loss after the cone test was also improved with up to 3%. The indication of a positive synergistic flame retardant effect of the ATTP-MAPP mixture is supported by thermogravimetric analysis. The addition of this rod-like mineral improved the general fire retardant properties of the base bitumen and increased the viscosity. Therefore, the polymer-modified bitumen with both fire retardant and rheological properties (providing mechanical strength) is a promising novel approach in the design of bitumen roofing membranes. 
  •  
16.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy