SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ulusen D.) "

Sökning: WFRF:(Ulusen D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cravens, T. E., et al. (författare)
  • Dynamical and magnetic field time constants for Titan's ionosphere : Empirical estimates and comparisons with Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:8, s. A08319-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma in Titan's ionosphere flows in response to forcing from thermal pressure gradients, magnetic forces, gravity, and ion-neutral collisions. This paper takes an empirical approach to the ionospheric dynamics by using data from Cassini instruments to estimate pressures, flow speeds, and time constants on the dayside and nightside. The plasma flow speed relative to the neutral gas speed is approximately 1 m s(-1) near an altitude of 1000 km and 200 m s(-1) at 1500 km. For comparison, the thermospheric neutral wind speed is about 100 m s(-1). The ionospheric plasma is strongly coupled to the neutrals below an altitude of about 1300 km. Transport, vertical or horizontal, becomes more important than chemistry in controlling ionospheric densities above about 1200-1500 km, depending on the ion species. Empirical estimates are used to demonstrate that the structure of the ionospheric magnetic field is determined by plasma transport (including neutral wind effects) for altitudes above about 1000 km and by magnetic diffusion at lower altitudes. The paper suggests that a velocity shear layer near 1300 km could exist at some locations and could affect the structure of the magnetic field. Both Hall and polarization electric field terms in the magnetic induction equation are shown to be locally important in controlling the structure of Titan's ionospheric magnetic field. Comparisons are made between the ionospheric dynamics at Titan and at Venus.
  •  
2.
  • Luhmann, J. G., et al. (författare)
  • Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 219:2, s. 534-555
  • Tidskriftsartikel (refereegranskat)abstract
    • In the similar to 6 years since the Cassini spacecraft went into orbit around Saturn in 2004, roughly a dozen Titan flybys have occurred for which the Ion Neutral Mass Spectrometer (INMS) measured that moon's ionospheric density and composition. For these, and for the majority of the similar to 60 close flybys probing to altitudes down to similar to 950 km, Langmuir Probe electron densities were also obtained. These were all complemented by Cassini magnetometer observations of the magnetic fields affected by the Titan plasma interaction. Titan's ionosphere was expected to differ from those of other unmagnetized planetary bodies because of significant contributions from particle impact due to its magnetospheric environment. However, previous analyses of these data clearly showed the dominance of the solar photon source, with the possible exception of the nightside. This paper describes the collected ionospheric data obtained in the period between Cassini's Saturn Orbit Insertion in 2004 and 2009, and examines some of their basic characteristics with the goal of searching for magnetospheric influences. These influences might include effects on the altitude profiles of impact ionization by magnetospheric particles at the Titan orbit location, or by locally produced pickup ions freshly created in Titan's upper atmosphere. The effects of forces on the ionosphere associated with both the draped and penetrating external magnetic fields might also be discernable. A number of challenges arise in such investigations given both the observed order of magnitude variations in the magnetospheric particle sources and the unsteadiness of the magnetospheric magnetic field and plasma flows at Titan's (similar to 20Rs (Saturn Radius)) orbit. Transterminator flow of ionospheric plasma from the dayside may also supply some of the nightside ionosphere, complicating determination of the magnetospheric contribution. Moreover, we are limited by the sparse sampling of the ionosphere during the mission as the Titan interaction also depends on Saturn Local Time as well as possible intrinsic asymmetries and variations of Titan's neutral atmosphere. We use organizations of the data by key coordinate systems of the plasma interaction with Titan's ionosphere to help interpret the observations. The present analysis does not find clear characteristics of the magnetosphere's role in defining Titan's ionosphere. The observations confirm the presence of an ionosphere produced mainly by sunlight, and an absence of expected ionospheric field signatures in the data. Further investigation of the latter, in particular, may benefit from numerical experiments on the inner boundary conditions of 3D models including the plasma interaction and features such as neutral winds.
  •  
3.
  • Ulusen, D., et al. (författare)
  • Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model : Evidence for organized behavior at high altitudes
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 217:1, s. 43-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent papers suggest the significant variability of conditions in Saturn's magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above similar to 1800 km (1.7 Rt) altitude by the average external field due to Saturn's dipole moment. In this study, we analyze Cassini's plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above similar to 1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around similar to 1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan's ionosphere) complicate what is observed.
  •  
4.
  • Ulusen, D., et al. (författare)
  • Investigation of the force balance in the Titan ionosphere : Cassini T5 flyby model/data comparisons
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 210:2, s. 867-880
  • Tidskriftsartikel (refereegranskat)abstract
    • Cassini's Titan flyby on 16 April, 2005 (T5) is the only encounter when the two main ionizing sources of the moon's atmosphere, solar radiation and corotating plasma, align almost anti-parallel. In this paper a single-fluid multi-species 3D MHD model of the magnetospheric plasma interaction for T5 conditions is analyzed. Model results are compared to observations to investigate the ionospheric dynamics at Titan as well as to understand the deviations from a typical solar wind interaction, such as Venus' interaction with the solar wind. Model results suggest that for the T5 interaction configuration, corotating plasma is the dominant driver determining the global interaction features at high altitudes. In the lower ionosphere below similar to 1500 km altitude - where the control of the ionospheric composition transfers from dynamic to chemical processes - magnetic and thermal pressure gradients oppose each other locally, complicating the ionospheric dynamics. Model results also imply that the nightside ionosphere - produced only by the impact ionization in the model - does not provide enough thermal pressure to balance the incident plasma dynamic pressure. As a result, the induced magnetic barrier penetrates into the ionosphere by plasma convection down to similar to 1000 km altitude and by magnetic diffusion below this altitude. Moreover, strong horizontal drag forces due to ion-neutral collisions and comparable drag forces estimated from possible neutral winds in the lower ionosphere below similar to 1400 km altitude oppose over local regions, implying that the Titan interaction must be treated as a 3D problem. Ion and electron densities calculated from the model generally agree with the Cassini Ion Neutral Mass Spectrometer and Langmuir probe measurements; however, there are significant differences between the calculated and measured magnetic fields. We discuss possible explanations for the discrepancy in the magnetic field predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy