SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Unbehaun T.) "

Sökning: WFRF:(Unbehaun T.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aharonian, F., et al. (författare)
  • A deep spectromorphological study of the ϒ-ray emission surrounding the young massive stellar cluster Westerlund 1
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EPD Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the gamma-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (similar to 2 degrees diameter) gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the gamma-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point.
  •  
2.
  • Aharonian, F., et al. (författare)
  • Evidence for γ-ray emission from the remnant of Kepler’s supernova based on deep H.E.S.S. observations
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations with imaging atmospheric Cherenkov telescopes (IACTs) have enhanced our knowledge of nearby supernova (SN) remnants with ages younger than 500 yr by establishing Cassiopeia A and the remnant of Tycho's SN as very-high-energy (VHE) gamma-ray sources. The remnant of Kepler's SN, which is the product of the most recent naked-eye SN in our Galaxy, is comparable in age to the other two, but is significantly more distant. If the gamma-ray luminosities of the remnants of Tycho's and Kepler's SNe are similar, then the latter is expected to be one of the faintest gamma-ray sources within reach of the current generation TACT arrays. Here we report evidence at a statistical level of 4.6 sigma for a VHE signal from the remnant of Kepler's SN based on deep observations by the High Energy Stereoscopic System (H.E.S.S.) with an exposure of 152 h. The measured integral flux above an energy of 226 GeV is similar to 0.3% of the flux of the Crab Nebula. The spectral energy distribution (SED) reveals a gamma-ray emitting component connecting the VHE emission observed with H.E.S.S. to the emission observed at GeV energies with Fermi-LAT. The overall SED is similar to that of the remnant of Tycho's SN, possibly indicating the same nonthermal emission processes acting in both these young remnants of thermonuclear SNe.
  •  
3.
  • Aharonian, F., et al. (författare)
  • Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi
  • 2022
  • Ingår i: Science. - : American Association for Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6588, s. 77-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy [VHE: greater than or similar to 100 giga-electron volts] gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy