SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Unger Stefan) "

Sökning: WFRF:(Unger Stefan)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexander, Stephen P. H., et al. (författare)
  • The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
  • 2023
  • Ingår i: BRITISH JOURNAL OF PHARMACOLOGY. - : British pharmacological society. - 0007-1188 .- 1476-5381. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at . G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
2.
  • Christopoulos, Arthur, et al. (författare)
  • THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.
  • 2021
  • Ingår i: British journal of pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 178 Suppl 1
  • Forskningsöversikt (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
3.
  • Anzt, Hartwig, et al. (författare)
  • An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.
  •  
4.
  • Bergmeister, Konstantin D, et al. (författare)
  • Peripheral nerve transfers change target muscle structure and function
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective nerve transfers surgically rewire motor neurons and are used in extremity reconstruction to restore muscle function or to facilitate intuitive prosthetic control. We investigated the neurophysiological effects of rewiring motor axons originating from spinal motor neuron pools into target muscles with lower innervation ratio in a rat model. Following reinnervation, the target muscle's force regenerated almost completely, with the motor unit population increasing to 116% in functional and 172% in histological assessments with subsequently smaller muscle units. Muscle fiber type populations transformed into the donor nerve's original muscles. We thus demonstrate that axons of alternative spinal origin can hyper-reinnervate target muscles without loss of muscle force regeneration, but with a donor-specific shift in muscle fiber type. These results explain the excellent clinical outcomes following nerve transfers in neuromuscular reconstruction. They indicate that reinnervated muscles can provide an accurate bioscreen to display neural information of lost body parts for high-fidelity prosthetic control.
  •  
5.
  • Eriksson, Marie, et al. (författare)
  • Avloppsvatten : Rening av avloppsvatten i Sverige
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Utvecklingen de senaste 200 åren har gått från nedgrävda latriner via underjordiska kloaker som släpptes ut i närmaste sjö eller kustvatten till avancerade avloppsreningsverk. Avloppsfrågan har förändrats från att vara lösningen på ett lokalt sanitärt problem till att bli en global miljöfråga.Rening av avloppsvatten i Sverige ges ut av Naturvårdsverket och beskriver hur reningen av avloppsvatten från tätorter utvecklats i Sverige under 1900- och 2000-talen. Skriften ges ut vartannat år och har uppdaterats med senaste statistiken från 2014 angående utsläpp och slam från reningsverk.Informationen presenteras enligt artikel 16 i avloppsdirektivet (91/271/EEG). Direktivet omfattar allt avloppsvatten som samlas upp i ledningsnät, men kvantitativa krav ställs bara för de reningsverk som betjänar mer är 2 000 personer. I Sverige motsvarar det drygt 400 anläggningar. De gamla medlemsländerna i EU (EU15) skulle ha uppfyllt alla åtgärder inom ramen för direktivet vid utgången av 2005. De 12 nya EU-länderna har olika övergångsregler.
  •  
6.
  • Kronander, Joel, 1983-, et al. (författare)
  • A unified framework for multi-sensor HDR video reconstruction
  • 2014
  • Ingår i: Signal Processing : Image Communications. - : Elsevier. - 0923-5965. ; 29:2, s. 203-215
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most successful approaches to modern high quality HDR-video capture is to use camera setups with multiple sensors imaging the scene through a common optical system. However, such systems pose several challenges for HDR reconstruction algorithms. Previous reconstruction techniques have considered debayering, denoising, resampling (alignment) and exposure fusion as separate problems. In contrast, in this paper we present a unifying approach, performing HDR assembly directly from raw sensor data. Our framework includes a camera noise model adapted to HDR video and an algorithm for spatially adaptive HDR reconstruction based on fitting of local polynomial approximations to observed sensor data. The method is easy to implement and allows reconstruction to an arbitrary resolution and output mapping. We present an implementation in CUDA and show real-time performance for an experimental 4 Mpixel multi-sensor HDR video system. We further show that our algorithm has clear advantages over existing methods, both in terms of flexibility and reconstruction quality.
  •  
7.
  • Kronander, Joel, et al. (författare)
  • Real-time HDR video reconstruction for multi-sensor systems
  • 2012
  • Ingår i: ACM SIGGRAPH 2012 Posters. - New York, NY, USA : ACM Press. ; , s. 65-
  • Konferensbidrag (refereegranskat)abstract
    • HDR video is an emerging field of technology, with a few camera systems currently in existence [Myszkowski et al. 2008], Multi-sensor systems [Tocci et al. 2011] have recently proved to be particularly promising due to superior robustness against temporal artifacts, correct motion blur, and high light efficiency. Previous HDR reconstruction methods for multi-sensor systems have assumed pixel perfect alignment of the physical sensors. This is, however, very difficult to achieve in practice. It may even be the case that reflections in beam splitters make it impossible to match the arrangement of the Bayer filters between sensors. We therefor present a novel reconstruction method specifically designed to handle the case of non-negligible misalignments between the sensors. Furthermore, while previous reconstruction techniques have considered HDR assembly, debayering and denoising as separate problems, our method is capable of simultaneous HDR assembly, debayering and smoothing of the data (denoising). The method is also general in that it allows reconstruction to an arbitrary output resolution and mapping. The algorithm is implemented in CUDA, and shows video speed performance for an experimental HDR video platform consisting of four 2336x1756 pixels high quality CCD sensors imaging the scene trough a common optical system. ND-filters of different densities are placed in front of the sensors to capture a dynamic range of 24 f-stops.
  •  
8.
  • Kronander, Joel, et al. (författare)
  • Unified HDR reconstruction from raw CFA data
  • 2013
  • Ingår i: Proceedings of IEEE International Conference on Computational Photography 2013. - : IEEE. - 9781467364638 ; , s. 1-9
  • Konferensbidrag (refereegranskat)abstract
    • HDR reconstruction from multiple exposures poses several challenges. Previous HDR reconstruction techniques have considered debayering, denoising, resampling (alignment) and exposure fusion in several steps. We instead present a unifying approach, performing HDR assembly directly from raw sensor data in a single processing operation. Our algorithm includes a spatially adaptive HDR reconstruction based on fitting local polynomial approximations to observed sensor data, using a localized likelihood approach incorporating spatially varying sensor noise. We also present a realistic camera noise model adapted to HDR video. The method allows reconstruction to an arbitrary resolution and output mapping. We present an implementation in CUDA and show real-time performance for an experimental 4 Mpixel multi-sensor HDR video system. We further show that our algorithm has clear advantages over state-of-the-art methods, both in terms of flexibility and reconstruction quality.
  •  
9.
  •  
10.
  • Unger, Jonas, 1978-, et al. (författare)
  • A Real Time Light Probe
  • 2004
  • Ingår i: The 25th Eurographics Annual Conference 2004 Short papers and Interactive Applications, Grenoble, France.
  • Konferensbidrag (refereegranskat)abstract
    • We present a novel system capable of capturing high dynamic range (HDR) Light Probes at video speed. Each Light Probe frame is built from an individual full set of exposures, all of which are captured within the frame time. The exposures are processed and assembled into a mantissa-exponent representation image within the camera unit before output, and then streamed to a standard PC. As an example, the system is capable of capturing Light Probe Images with a resolution of 512x512 pixels using a set of 10 exposures covering 15 f-stops at a frame rate of up to 25 final HDR frames per second. The system is built around commercial special-purpose camera hardware with on-chip programmable image processing logic and tightly integrated frame buffer memory, and the algorithm is implemented as custom downloadable microcode software.
  •  
11.
  • Unger, Jonas, 1978-, et al. (författare)
  • An optical system for single image environment maps
  • 2007
  • Ingår i: SIGGRAPH '07 ACM SIGGRAPH 2007 posters. - : ACM Press.
  • Konferensbidrag (refereegranskat)abstract
    • We present an optical setup for capturing a full 360° environment map in a single image snapshot. The setup, which can be used with any camera device, consists of a curved mirror swept around a negative lens, and is suitable for capturing environment maps and light probes. The setup achieves good sampling density and uniformity for all directions in the environment.
  •  
12.
  • Unger, Jonas, 1978-, et al. (författare)
  • Densely Sampled Light Probe Sequences for Spatially Variant Image Based Lighting
  • 2006
  • Ingår i: The 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, 2006 Kuala Lumpur, Malaysia. - New York, NY, USA : ACM. - 1595935649 ; , s. 341-347
  • Konferensbidrag (refereegranskat)abstract
    • We present a novel technique for capturing spatially and temporally resolved light probe sequences, and using them for rendering. For this purpose we have designed and built a Real Time Light Probe; a catadioptric imaging system that can capture the full dynamic range of the lighting incident at each point in space at video frame rates, while being moved through a scene. The Real Time Light Probe uses a digital imaging system which we have programmed to capture high quality, photometrically accurate color images with a dynamic range of 10,000,000:1 at 25 frames per second. By tracking the position and orientation of the light probe, it is possible to transform each light probe into a common frame of reference in world coordinates, and map each point in space along the path of motion to a particular frame in the light probe sequence. We demonstrate our technique by rendering synthetic objects illuminated by complex real world lighting, using both traditional image based lighting methods with temporally varying light probe illumination and an extension to handle spatially varying lighting conditions across large objects.
  •  
13.
  • Unger, Jonas, 1978-, et al. (författare)
  • Free Form Incident Light Fields
  • 2008
  • Ingår i: Computer graphics forum (Print). - : Wiley InterScience. - 0167-7055 .- 1467-8659. ; 27:4, s. 1293-1301
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents methods for photo-realistic rendering using strongly spatially variant illumination captured from real scenes. The illumination is captured along arbitrary paths in space using a high dynamic range, HDR, video camera system with position tracking. Light samples are rearranged into 4-D incident light fields (ILF) suitable for direct use as illumination in renderings. Analysis of the captured data allows for estimation of the shape, position and spatial and angular properties of light sources in the scene. The estimated light sources can be extracted from the large 4D data set and handled separately to render scenes more efficiently and with higher quality. The ILF lighting can also be edited for detailed artistic control.
  •  
14.
  • Unger, Jonas, 1978-, et al. (författare)
  • High Dynamic Range Video for Photometric Measurement of Illumination
  • 2007
  • Ingår i: Sensors, Cameras, and Systems for Scientific/Industrial Applications VIII. - Bellingham, Washington/Springfield, Virginia, USA : SPIE—The International Society for Optical Engineering & IS&T—The Society for Imaging Science and Technology. - 9780819466143 ; , s. 65010E-1-65010E-10
  • Konferensbidrag (refereegranskat)abstract
    • We describe the design and implementation of a high dynamic range (HDR) imaging system capable of capturing RGB color images with a dynamic range of 10,000,000 : 1 at 25 frames per second. We use a highly programmable camera unit with high throughput A/D conversion, data processing and data output. HDR acquisition is performed by multiple exposures in a continuous rolling shutter progression over the sensor. All the different exposures for one particular row of pixels are acquired head to tail within the frame time, which means that the time disparity between exposures is minimal, the entire frame time can be used for light integration and the longest expo- sure is almost the entire frame time. The system is highly configurable, and trade-offs are possible between dynamic range, precision, number of exposures, image resolution and frame rate.
  •  
15.
  • Unger, Jonas, 1978-, et al. (författare)
  • Image Based Lighting using HDR-video
  • 2013
  • Ingår i: Eurographics 24th Symposium on Rendering.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has been widely recognized that lighting plays a key role in the realism and visual interest of computer graphics renderings. This hasled to research and development of image based lighting (IBL) techniques where the illumination conditions in real world scenes are captured as high dynamic range (HDR) image panoramas and used as lighting information during rendering. Traditional IBL where the lighting is captured at a single position in the scene has now become a widely used tool in most production pipelines. In this poster, we give an overview of a system pipeline where we use HDR-video cameras to extend traditional IBL techniques to capture real world lighting that may include variations in the spatial or temporal domains. We also describe how the capture systems and algorithms for processing and rendering have been incorporated into a robust systems pipeline for production of highly realisticrenderings. High dynamic range video based scene capture thus enables highly realistic renderings where traditional image based lighting, using a single light probe, fail to capture important details.
  •  
16.
  • Unger, Jonas, 1978-, et al. (författare)
  • Next Generation Image Based Lighting using HDR Video
  • 2011
  • Ingår i: Proceeding SIGGRAPH '11 ACM SIGGRAPH 2011 Talks. - New York, NY, USA : ACM Special Interest Group on Computer Science Education. - 9781450309745 ; , s. article no 60-
  • Konferensbidrag (refereegranskat)abstract
    • We present an overview of our recently developed systems pipeline for capture, reconstruction, modeling and rendering of real world scenes based on state-of-the-art high dynamic range video (HDRV). The reconstructed scene representation allows for photo-realistic Image Based Lighting (IBL) in complex environments with strong spatial variations in the illumination. The pipeline comprises the following essential steps:1.) Capture - The scene capture is based on a 4MPixel global shutter HDRV camera with a dynamic range of more than 24 f-stops at 30 fps. The HDR output stream is stored as individual un-compressed frames for maximum flexibility. A scene is usually captured using a combination of panoramic light probe sequences [1], and sequences with a smaller field of view to maximize the resolution at regions of special interest in the scene. The panoramic sequences ensure full angular coverage at each position and guarantee that the information required for IBL is captured. The position and orientation of the camera is tracked during capture.2.) Scene recovery - Taking one or more HDRV sequences as input, a geometric proxy model of the scene is built using a semi-automatic approach. First, traditional computer vision algorithms such as structure from motion [2] and Manhattan world stereo [3] are used. If necessary, the recovered model is then modified using an interaction scheme based on visualizations of a volumetric representation of the scene radiance computed from the input HDRV sequence. The HDR nature of this volume also enables robust extraction of direct light sources and other high intensity regions in the scene.3.) Radiance processing - When the scene proxy geometry has been recovered, the radiance data captured in the HDRV sequences are re-projected onto the surfaces and the recovered light sources. Since most surface points have been imaged from a large number of directions, it is possible to reconstruct view dependent texture maps at the proxy geometries. These 4D data sets describe a combination of detailed geometry that has not been recovered and the radiance reflected from the underlying real surfaces. The view dependent textures are then processed and compactly stored in an adaptive data structure.4.) Rendering - Once the geometric and radiometric scene information has been recovered, it is possible to place virtual objects into the real scene and create photo-realistic renderings as illustrated above. The extracted light sources enable efficient sampling and rendering times that are fully comparable to that of traditional virtual computer graphics light sources. No previously described method is capable of capturing and reproducing the angular and spatial variation in the scene illumination in comparable detail.We believe that the rapid development of high quality HDRV systems will soon have a large impact on both computer vision and graphics. Following this trend, we are developing theory and algorithms for efficient processing HDRV sequences and using the abundance of radiance data that is going to be available.
  •  
17.
  • Unger, Jonas, 1978-, et al. (författare)
  • Spatially Varying Image Based Lighting by Light Probe Sequences, Capture, Processing and Rendering
  • 2007
  • Ingår i: The Visual Computer. - : Springer Link. - 0178-2789 .- 1432-2315. ; 23:7, s. 453-465
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel technique for capturing spatially or temporally resolved light probe sequences, and using them for image based lighting. For this purpose we have designed and built a real-time light probe, a catadioptric imaging system that can capture the full dynamic range of the lighting incident at each point in space at video frame rates, while being moved through a scene. The real-time light probe uses a digital imaging system which we have programmed to capture high quality, photometrically accurate color images of 512×512 pixels with a dynamic range of 10000000:1 at 25 frames per second.By tracking the position and orientation of the light probe, it is possible to transform each light probe into a common frame of reference in world coordinates, and map each point and direction in space along the path of motion to a particular frame and pixel in the light probe sequence. We demonstrate our technique by rendering synthetic objects illuminated by complex real world lighting, first by using traditional image based lighting methods and temporally varying light probe illumination, and second an extension to handle spatially varying lighting conditions across large objects and object motion along an extended path.
  •  
18.
  • Unger, Jonas, 1978-, et al. (författare)
  • Spatially varying image based lighting using HDR-video
  • 2013
  • Ingår i: Computers & graphics. - : Elsevier. - 0097-8493 .- 1873-7684. ; 37:7, s. 923-934
  • Tidskriftsartikel (refereegranskat)abstract
    • Illumination is one of the key components in the creation of realistic renderings of scenes containing virtual objects. In this paper, we present a set of novel algorithms and data structures for visualization, processing and rendering with real world lighting conditions captured using High Dynamic Range (HDR) video. The presented algorithms enable rapid construction of general and editable representations of the lighting environment, as well as extraction and fitting of sampled reflectance to parametric BRDF models. For efficient representation and rendering of the sampled lighting environment function, we consider an adaptive (2D/4D) data structure for storage of light field data on proxy geometry describing the scene. To demonstrate the usefulness of the algorithms, they are presented in the context of a fully integrated framework for spatially varying image based lighting. We show reconstructions of example scenes and resulting production quality renderings of virtual furniture with spatially varying real world illumination including occlusions.
  •  
19.
  • Unger, Jonas, 1978-, et al. (författare)
  • Temporally and Spatially Varying Image Based Lighting using HDR-video
  • 2013
  • Ingår i: Proceedings of the 21st European Signal Processing Conference (EUSIPCO), 2013. - : IEEE. ; , s. 1-5
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present novel algorithms and data structures for capturing, processing and rendering with real world lighting conditions based on high dynamic range video sequences. Based on the captured HDR video data we show how traditional image based lighting can be extended to include illumination variations in both the temporal as well as the spatial domain. This enables highly realistic renderings where traditional IBL techniques using a single light probe fail to capture important details in the real world lighting environment. To demonstrate the usefulness of our approach, we show examples of both off-line and real-time rendering applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19
Typ av publikation
konferensbidrag (9)
tidskriftsartikel (8)
rapport (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Larsson, Per (4)
Schulz, Stefan (2)
Kukkonen, Jyrki P. (2)
Christopoulos, Arthu ... (2)
Davenport, Anthony P ... (2)
Kelly, Eamonn (2)
visa fler...
Peters, John A. (2)
Veale, Emma L. (2)
Armstrong, Jane F. (2)
Faccenda, Elena (2)
Harding, Simon D. (2)
Davies, Jamie A. (2)
Abbracchio, Maria Pi ... (2)
Alexander, Wayne (2)
Al-hosaini, Khaled (2)
Barnes, Nicholas M. (2)
Bathgate, Ross (2)
Beaulieu, Jean-Marti ... (2)
Bernstein, Kenneth E ... (2)
Bettler, Bernhard (2)
Birdsall, Nigel J. M ... (2)
Blaho, Victoria (2)
Boulay, Francois (2)
Bousquet, Corinne (2)
Burnstock, Geoffrey (2)
Calo, Girolamo (2)
Castano, Justo P. (2)
Catt, Kevin J. (2)
Ceruti, Stefania (2)
Chazot, Paul (2)
Chiang, Nan (2)
Chini, Bice (2)
Chun, Jerold (2)
Cianciulli, Antonia (2)
Civelli, Olivier (2)
Clapp, Lucie H. (2)
Couture, Rejean (2)
Csaba, Zsolt (2)
Dahlgren, Claes, 194 ... (2)
Dent, Gordon (2)
Douglas, Steven D. (2)
Dournaud, Pascal (2)
Eguchi, Satoru (2)
Escher, Emanuel (2)
Filardo, Edward J. (2)
Fong, Tung (2)
Fumagalli, Marta (2)
Gainetdinov, Raul R. (2)
Gerard, Craig (2)
Gershengorn, Marvin (2)
visa färre...
Lärosäte
Linköpings universitet (14)
Karolinska Institutet (3)
Göteborgs universitet (2)
Uppsala universitet (1)
Lunds universitet (1)
Naturvårdsverket (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (18)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (7)
Medicin och hälsovetenskap (5)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy