SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urban Joachim 1964) "

Sökning: WFRF:(Urban Joachim 1964)

  • Resultat 1-50 av 118
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baron, P., et al. (författare)
  • HO2 measurements in the stratosphere and the mesosphere from the sub-millimetre limb sounder Odin/SMR
  • 2009
  • Ingår i: International Journal of Remote Sensing. - : Informa UK Limited. - 1366-5901 .- 0143-1161. ; 30:15-16, s. 4195-4208
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents observations of the hydroperoxy radical (HO 2 ) performed by the Odin/SMR instrument from the middle stratosphere to the upper mesosphere (35-90 km). The data set covers the period from October 2003 to December 2005 on a basis of one observation period of 24 hours each month. Odin/SMR can provide two zonal maps of HO 2 per day, with a vertical resolution of 10 km. The non-standard processing applied to the retrievals is described. The consistency between HO 2 observations from three periods in August 2004 demonstrates the robustness of the retrieval method. It also shows that the measurements are sensitive enough to detect changes in the middle and upper mesosphere. The retrieval needs further improvements for studying stratospheric variations. © 2009 Taylor & Francis.
  •  
2.
  • Barret, B., et al. (författare)
  • Intercomparisons of trace gases profiles from the Odin/SMR and Aura/MLS limb sounders
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:D21
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the intercomparison of O(3), HNO(3), ClO, N(2)O and CO profiles measured by the two spaceborne microwave instruments MLS ( Microwave Limb Sounder) and SMR ( Submillimetre Radiometer) on board the Aura and Odin satellites, respectively. We compared version 1.5 level 2 data from MLS with level 2 data produced by the French data processor version 222 and 225 and by the Swedish data processor version 2.0 for several days in September 2004 and in March 2005. For the five gases studied, an overall good agreement is found between both instruments. Most of the observed discrepancies between SMR and MLS are consistent with results from other intercomparison studies involving MLS or SMR. O(3) profiles retrieved from the SMR 501.8 GHz band are noisier than MLS profiles but mean biases between both instruments do not exceed 10%. SMR HNO(3) profiles are biased low relative to MLS's by similar to 30% above the profile peak. In the lower stratosphere, MLS ClO profiles are biased low by up to 0.3 ppbv relative to coincident SMR profiles, except in the Southern Hemisphere polar vortex in the presence of chlorine activation. N(2)O profiles from both instruments are in very good agreement with mean biases not exceeding 15%. Finally, the intercomparison between SMR and MLS CO profiles has shown a good agreement from the middle stratosphere to the middle mesosphere in spite of strong oscillations in the MLS profiles. In the upper mesosphere, MLS CO concentrations are biased high relative to SMR while negative values in the MLS retrievals are responsible for a negative bias in the tropics around 30 hPa.
  •  
3.
  • Christensen, Ole Martin, 1984, et al. (författare)
  • Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:5, s. 1981-1999
  • Tidskriftsartikel (refereegranskat)abstract
    • A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode was activated during June, July and August of 2010 and 2011, and for latitudes between 50 and 82 degrees N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75 and 90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.2 ppmv for water vapour and 2K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppmv) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 15 K) and water vapour (> 0.5 ppmv), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data is provided by OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits is considered. For these orbits, effects of PMCs on the water vapour distribution are clearly seen. Areas depleted of water vapour are found above layers with PMC, while regions of enhanced water vapour due to ice particle sedimentation are primarily placed between and under the clouds.
  •  
4.
  • Dupuy, E., et al. (författare)
  • Strato-mesospheric Measurements of Carbon Monoxide with the Odin Sub-millimetre Radiometer: Retrieval and First Results
  • 2004
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 31:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) aboard the Odin satellite has been measuring vertical profiles of atmospheric trace gases since August 2001. We present the inversion methodology developed for CO measurements and the first retrieval results. CO can be retrieved from a single scan measurement throughout the middle atmosphere, with a typical resolution of similar to3 km and a relative error of similar to10% to similar to25%. Retrieval results are evaluated through comparison with data from the Whole Atmosphere Community Climate Model (WACCM) and observations of the Improved Stratospheric and Mesospheric Sounder (ISAMS) on board the Upper Atmospheric Research Satellite (UARS). Considering the large natural variability of CO, the SMR retrievals give good confirmation of the WACCM results, with an overall agreement within a factor of 2. ISAMS abundances are higher than SMR mixing ratios by a factor of 5-10 above 0.5 hPa from similar to80degreesS to similar to50degreesN.
  •  
5.
  • Forkman, Peter, 1959, et al. (författare)
  • Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:5, s. 2827-2841
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57 °N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O-CO-12 + 13 and V4O-CO-200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations. © 2012 Author(s).
  •  
6.
  • Jégou, F., et al. (författare)
  • Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne intruments
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3385-3409
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR) and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System) instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band), and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement). In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC) and balloon flight missions conducted by the Canadian Space Agency (CSA), the Laboratoire de Physique et de Chimie de l\'{}Environnement (LPCE, Orléans, France), and the Service d'Aéronomie (SA, Paris, France). Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km) within −0.3±0.2 ppmv (bias±standard deviation) for SMR (v222, v2.1) and within −0.5±0.2 ppmv for OSIRIS (v3.0). Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments) yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv for the OSIRIS data. Finally the comparisons with instruments on large balloons (10–31 km) show a good agreement, within −0.7±1 ppmv. The official SMR v2.1 dataset is consistent in all altitude ranges with POAM III, NDACC and large balloon-borne instruments measurements. In the SMR v2.1 data, no different systematic error has been found in the 0–35km range in comparison with the 35–60 km range. The same feature has been highlighted in both hemispheres in SMR v2.1/POAM III intercomparisons, and no latitudinal dependence has been revealed in SMR v2.1/NDACC intercomparisons.
  •  
7.
  • Jones, Ashley, 1977, et al. (författare)
  • Evolution of stratospheric ozone and water vapour time series studied with satellite measurements
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 6055-6075
  • Tidskriftsartikel (refereegranskat)abstract
    • The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II), the HALogen Occultation Experiment (HALOE), the Solar BackscatterUltraViolet-2 (SBUV/2) instrument, the Sub-Millimetre Radiometer (SMR), the Optical Spectrograph InfraRed Imager System (OSIRIS), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY). Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO), and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma) from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively) compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS) measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km) and has even shown signs of increasing until present. We show that a similar correlation is also seen with the temperature measured at 100 hPa during this same period.
  •  
8.
  • Jones, Ashley, 1977, et al. (författare)
  • Intercomparison of Odin/SMR Ozone measurements with MIPAS and balloon sonde data
  • 2007
  • Ingår i: Canadian Journal of Physics. ; 85:11, s. 1111-1123
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) on board Odin measures various important atmospheric species, including stratospheric ozone. In this study we compare the three versions (v1.2, v2.0 and v2.1) of level 2 Odin/SMR global stratospheric ozone data to coincident level 2 MIPAS V4.61 and balloon sonde stratospheric ozone data during 2003. The most current product from Odin/SMR (at time of writing), the v2.1, showed the smallest systematic differences when compared to coincident MIPAS and sonde data. Between 17 and 55 km, v2.1 values agreed with MIPAS within 10% (a maximum of 0.42 ppmv), while comparisons to sonde measurements showed an agreement of typically 5-10% between 22 and 35 km (less than 0.5 ppmv below 33 km). Tropical latitudes below 35 km preseneted the largest absolute systematic differences between v2.1 and sonde coincidences, where Odin/SMR was systematically lower by ~0.9 ppmv (more than 10% difference) at approximately 30 km. Comparisons concerning the previous two Odin/SMR versions showed much larger systematic differences, especially at the higher and lower stratospheric altitudes. The main conclusion here is that we suggest that v2.1 of Odin/SMR ozone data should be used for scientific studies.
  •  
9.
  •  
10.
  • Khosrawi, F., et al. (författare)
  • The SPARC water vapour assessment II: Comparison of stratospheric and lower mesospheric water vapour time series observed from satellites
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:7, s. 4435-4463
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°-70°S), the tropics (15°S-15°N) and the Northern Hemisphere mid-latitudes (50°-60°N) at four different altitudes (0.1, 3, 10 and 80hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986-2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
  •  
11.
  •  
12.
  • Lossow, Stefan, et al. (författare)
  • Observations of the mesospheric semi-annual oscillation (MSAO) in water vapour by Odin/SMR
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 6527-6540
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesospheric water vapour measurements taken by the SMR instrument aboard the Odin satellite between 2002 and 2006 have been analysed with focus on the mesospheric semi-annual circulation in the tropical and subtropical region. This analysis provides the first complete picture of mesospheric SAO in water vapour, covering altitudes above 80 km where previous studies were limited. Our analysis shows a clear semi-annual variation in the water vapour distribution in the entire altitude range between 65 km and 100 km in the equatorial area. Maxima occur near the equinoxes below 75 km and around the solstices above 80 km. The phase reversal occurs in the small layer in-between, consistent with the downward propagation of the mesospheric SAO in the zonal wind in this altitude range. The SAO amplitude exhibits a double peak structure in the equatorial region, with maxima at about 75 km and 81 km. The observed amplitudes show higher values than an earlier analysis based on UARS/HALOE data. The upper peak amplitude remains relatively constant with latitude. The lower peak amplitude decreases towards higher latitudes, but recovers in the Southern Hemisphere subtropics. On the other hand, the annual variation is much more prominent in the Northern Hemisphere subtropics. Furthermore, higher volume mixing ratios during summer and lower values during winter are observed in the Northern Hemisphere subtropics, as compared to the corresponding latitude range in the Southern Hemisphere.
  •  
13.
  • Lossow, Stefan, 1977, et al. (författare)
  • Wintertime water vapor in the polar upper mesosphere and lower thermosphere : First satellite observations by Odin submillimeter radiometer
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. D10304-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present Odin submillimeter radiometer (Odin/SMR) water vapor measurements in the upper mesosphere and lower thermosphere with focus on the polar latitudes in winter. Measurements since 2003 have been compiled to provide a first overview of the water vapor distribution in this altitude range. Our observations show a distinct seasonal increase of the water vapor concentration during winter at a given altitude above 90 km. Above 95 km the observations exhibit the annual water vapor maximum during wintertime. Model simulations from the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) and the Whole Atmosphere Community Climate Model version 3 (WACCM3) show results that are very similar to the observations. We suggest that the observed increase in water vapor during winter is mainly caused by a combination of upwelling of moister air from lower altitudes and diffusion processes. Distinct interhemispheric differences in the winter water vapor distribution in the upper mesosphere and lower thermosphere can be observed, both in the observations and the model results. The seasonal water vapor increase in the polar regions is much more pronounced in the Southern Hemisphere winter where higher concentrations can be observed. This observation is most likely due to interhemispheric differences in the underlying dynamics and diffusion processes
  •  
14.
  •  
15.
  •  
16.
  • Ricaud, P., et al. (författare)
  • Polar Vortex Evolution during the 2002 Antarctic Major Warming as Observed by the Odin Satellite
  • 2005
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 110:D5, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O(3)) and chlorine monoxide (ClO), a key constituent responsible for the so-called "ozone hole'', together with nitrous oxide (N(2)O), a dynamical tracer, and nitric acid (HNO(3)) and nitrogen dioxide (NO(2)), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19-20 September), during (24-25 September), and after (1-2 and 4-5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19-20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O(3) loss at 500 K. On 25-26 September the unusual morphology of the vortex is monitored by the N(2)O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1-2 October, leading to the end of the chemical O(3) loss, while HNO(3) and NO(2) fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO(2). The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO(3) in the model, which do not produce enough NO(2) in presence of sunlight to deactivate chlorine as fast as observed by Odin.
  •  
17.
  • RÖSEVALL, JOHN, 1977, et al. (författare)
  • A study of ozone depletion in the 2004/2005 Arctic winter based on data from Odin/SMR and Aura/MLS
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:D13
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone depletion in the colder than average 2004/2005 Arctic polar vortex is mapped and quantified using ozone profiles from two limb sounding satellite instruments, the Earth Observing System Microwave Limb Sounder (Aura/MLS) and the Odin Sub-Millimetre Radiometer (Odin/SMR). Profiles of chemically inert nitrous oxide (N(2)O) are used to trace vertical transport during the winter. Two methods are used for estimating the vortex average ozone losses north of 67 degrees equivalent latitude. In a first step, the time evolution of ozone mixing ratios is described on N(2)O isopleths. Maximum ozone depletion is found on the 100 ppbv and 150 ppbv N(2)O isopleths (located in the 430-460 K potential temperature range in mid-March 2005) where vortex average ozone depletion totalled 1.0-1.1 ppmv for Aura/MLS and 0.7-0.9 ppmv for Odin/SMR. Second, ozone profiles from Aura/MLS and Odin/SMR are assimilated into the DIAMOND isentropic transport model. Ozone depletion is estimated by comparing assimilated fields to ozone fields passively transported from 1 January. On the 450 K potential temperature level, the Aura/MLS ozone fields indicate 0.9-1.3 ppmv vortex-averaged ozone depletion while the Odin/SMR fields indicate 0.6-0.9 ppmv depletion. The uncertainty depends mainly on the rates of cross-isentropic transport used in the study. The ozone depletion estimates in this study are lower than previously published estimates. The discrepancies to some studies can be attributed to the more adequate treatment of an ozone poor region that is found in the central polar vortex in the early winter.
  •  
18.
  • Sagi, Kazutoshi, 1984, et al. (författare)
  • Twelve years of Arctic ozone loss observed by the Odin satellite
  • 2013
  • Ingår i: Proceedings of ESA Living Planet Symposium, SP-722. - 1609-042X. - 9789292212865
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In 2011, several groups reported dramatic ozone depletion over the arctic polar region approaching that of the Antarctic ozone hole. Odin, The Swedish-led satellite project in collaboration with Canada, France and Finland, was launched in February 2001 and continues to produce profiles of chemical species relevant to understanding the middle and upper atmosphere.This study concerns ozone loss over the northern pole utilizing the 12 years of ozone data from Odin/SMR.The unstable nature of the arctic vortex due to the propagation of planetary waves from troposphere makes quantifying chemical ozone loss in the arctic more difficult. The assimilation technique using a transport model is useful for separating the dynamical and chemical changes in the ozone amount as demonstrated earlier by Roseval et al (2007) . We have applied this method with a number of improvements to study the inter-annual variability during the entire Odin period.
  •  
19.
  •  
20.
  •  
21.
  • Urban, Joachim, 1964, et al. (författare)
  • Odin/SMR Limb Observations of Nitric Acid in the Stratosphere
  • 2007
  • Ingår i: European Space Agency, (Special Publication) ESA SP. - 0379-6566. ; ESA-SP-636:SP-636
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3) originating from the Earth limb in a band centred at 544.6GHz. The characteristics of the retrieved Odin/SMR version-2.0 HNO3 profiles are described. A climatology over more than five years of HNO 3 observations from 2001 to 2007 was created. Different aspects of the data, such as the global distribution and seasonal variation, the denitrification inside the polar vortices as well as the presence of high quantities of HNO3 in the middle and upper stratosphere at midwinter high latitudes are discussed.
  •  
22.
  • Urban, Joachim, 1964, et al. (författare)
  • Odin/SMR Limb Observations of Stratospheric Trace Gases: Level 2 Processing of ClO, N2O, O3, and HNO3
  • 2005
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 110:D14, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched on 20 February 2001, observes key species with respect to stratospheric chemistry and dynamics such as O-3, ClO, N2O, and HNO3 using two bands centered at 501.8 and 544.6 GHz. We present the adopted methodology for level 2 processing and the achieved in-orbit measurement capabilities of the SMR radiometer for these species in terms of altitude range, altitude resolution, and measurement precision. The characteristics of the relevant level 2 data versions, namely version 1.2 of the operational processor as well as versions 222 and 223 of the reference code, are discussed and differences are evaluated. An analysis of systematic retrieval errors, resulting from spectroscopic and instrumental uncertainties, is also presented.
  •  
23.
  • Urban, Joachim, 1964, et al. (författare)
  • Odin/SMR limb observations of stratospheric trace gases: Validation of N2O
  • 2005
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 110:9, s. D09301-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (Odin/SMR) on board the Odin satellite, launched on 20 February 2001, performs regular measurements of the global distribution of stratospheric nitrous oxide (N2O) using spectral observations of the J = 20→ 19 rotational transition centered at 502.296 GHz. We present a quality assessment for the retrieved N2O profiles (level 2 product) by comparison with independent balloonborne and aircraftborne validation measurements as well as by cross-comparing with preliminary results from other satellite instruments. An agreement with the airborne validation experiments within 28 ppbv in terms of the root mean square (RMS) deviation is found for all SMR data versions (v222, v223, and v1.2) under investigation. More precisely, the agreement is within 19 ppbv for N2O volume mixing ratios (VMR) lower than 200 ppbv and within 10% for mixing ratios larger than 150 ppbv. Given the uncertainties due to atmospheric variability inherent to such comparisons, these values should be interpreted as upper limits for the systematic error of the Odin/SMR N2O measurements. Odin/SMR N2O mixing ratios are systematically slightly higher than nonvalidated data obtained from the Improved Limb Atmospheric Spectrometer-II (ILAS-II) on board the Advanced Earth Observing Satellite-II (ADEOS-II). Root mean square deviations are generally within 23 ppbv (or 20% for VMR-N2O > 100 ppbv) for versions 222 and 223. The comparison with data obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat satellite yields a good agreement within 9-17 ppbv (or 10% for VMR-N2O > 100 ppbv) for the same data versions. Odin/SMR version 1.2 data show somewhat larger RMS deviations and a higher positive bias.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Wang, D.Y., et al. (författare)
  • Comparisons of MIPAS/ENVISAT ozone profiles with SMR/ODIN and HALOE/UARS observations
  • 2005
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 36:5, s. 927-931
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone volume mixing ratio (VMR) profiles are measured by the Michelson Interferometer for passive atmospheric sounding (MIPAS) on ENVISAT. The data sets produced by the science data processor at Institut fur Meteorologic und Klimaforschung (IMK), Germany are compared with those obtained by halogen occultation experiment (HALOE) on UARS and by sub-millimetre radiometer (SMR) on ODIN. For the stratospheric measurements taken during September/October 2002, the three instruments show reasonable agreement, with global mean differences within 0.1-0.3 ppmv. The typical zonal mean differences are of 0.4 ppmv for HALOE and 0.6 ppmv for SMR (4-6%) in the ozone VMR peak region at 25-30 km near the equator, though larger differences of 0.8-1 ppmv (8-10%) are also observed in a small latitude-altitude region in the tropic. A positive bias of about 0.2-0.4 ppmv in the MIPAS data in the 35-40 km region has also been found. Further studies are under way to explain these differences.
  •  
28.
  • Angelbratt, Jon, 1981, et al. (författare)
  • A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:13, s. 6167-6183
  • Tidskriftsartikel (refereegranskat)abstract
    • Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF) and carbon monoxide (CO) and tropopause height are used to reduce the variability in the methane (CH(4)) and nitrous oxide (N(2)O) total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60 degrees N, 11 degrees E, 600 ma.s.l.) and used on three other European FTIR stations, i.e. Jungfraujoch (47 degrees N, 8 degrees E, 3600 ma.s.l.), Zugspitze (47 degrees N, 11 degrees E, 3000 ma.s.l.), and Kiruna (68 degrees N, 20 degrees E, 400 ma.s.l.). Linear CH(4) trends between 0.13 +/- 0.01-0.25 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH(4) total columns. This model shows a growth in 1996-1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH(4) amount increases between 0.57 +/- 0.22-1.15 +/- 0.17% yr(-1). Linear N(2)O trends between 0.19 +/- 0.01-0.40 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N(2)O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N(2)O trends between the FTIR sites is of stratospheric origin. This agrees well with the N(2)O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 +/- 0.28% yr(-1), and considerably smaller trends at lower latitudes, 0.27 +/- 0.25% yr(-1). The multiple regression model was compared with two other trend methods, the ordinary linear regression and a Bootstrap algorithm. The multiple regression model estimated CH(4) and N(2)O trends that differed up to 31% compared to the other two methods and had uncertainties that were up to 300% lower. Since the multiple regression method were carefully validated this stresses the importance to account for variability in the total columns when estimating trend from solar FTIR data.
  •  
29.
  • Baron, P., et al. (författare)
  • AMATERASU: Model for atmospheric TeraHertz Radiation analysis and simulation
  • 2008
  • Ingår i: Journal of the National Institute of Information and Communications Technology. - 1349-3205. ; 55:1, s. 109-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the current status of the Advanced Model for Atmospheric TeraHertz Radiation Analysis and Simulation (AMATERASU) that is being developed in the framework of the NICT THz project. This code aims to be used for studying the insterest of the THz frequency region for atmospheric remote sensing, communication systems and estimate the impact of the THz thermal atmospheric emission in the Earth energy budget. This paper presents the first stage of the model development that concerns a non scattering and a horizontal homogeneous atmosphere, e.g., the geophysical parameters are only altitude dependent. A scattering module is being developed but it is presented in an other paper in this issue. The model is based on the Microwave Observation and Lines Estimation and REtrieval code (MOLIERE). The absorption coefficient module has been modified in order to extend the frequency coverage from the submillimeter wavelength to the near InfraRed region. A new radiative transfer module has been implemented that can handle the different types of optical paths and any location for the receiver. AMATERASU includes the original MOLIERE instrument simulator and retrieval codes. The validation methodology is discussed and some examples of the current applications are given. The next steps of the development are presented in the conclusion including the modeling of the horizontal inhomogeneties in the atmopshere.
  •  
30.
  • Baron, P., et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30 degrees S and 55 degrees N during the northern winter 2009-2010
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (similar to 35-80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35-60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30 degrees S to 55 degrees N and with a single profile precision of 7-9 ms(-1) between 8 and 0.6 hPa and better than 20 ms(-1) at altitudes above. The vertical resolution is 5-7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1-0.05 hPa, an absolute value of the mean difference 5 ms(-1)). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (>20 ms(-1)), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50-55 degrees N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of similar to 20 ms(-1)). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
31.
  • Baron, P., et al. (författare)
  • The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4, s. 2105-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.
  •  
32.
  •  
33.
  • Bender, Stefan, et al. (författare)
  • Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4171-4195
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), and the Sub-Millimetre Radiometer (SMR). We use the daily zonal mean data in that altitude range for the years 2004–2010 (ACE-FTS), 2005–2012 (MIPAS), 2008–2012 (SCIAMACHY), and 2003–2012 (SMR).We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in the form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability.
  •  
34.
  • Berthet, G., et al. (författare)
  • Nighttime chlorine monoxide observations by the Odin satellite and implications for the ClO/Cl2O2 equilibrium
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:11, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements of chlorine monoxide (ClO) by the SMR instrument onboard the Odin satellite to study the nighttime thermal equilibrium between ClO and its dimer Cl2O2. Observations performed in the polar vortex during the 2002-2003 Arctic winter showed enhanced amounts of nighttime ClO over a wide range of stratospheric temperatures (185
  •  
35.
  • Brohede, Samuel, 1977, et al. (författare)
  • Odin stratospheric proxy NOy measurements and climatology
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5731-5754
  • Tidskriftsartikel (refereegranskat)abstract
    • Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System) NO2 and SMR (Sub-millimetre and Millimetre Radiometer) HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and ClONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins) on 17 vertical layers (altitude, pressure or potential temperature) between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and ClONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error) and accuracy (systematic error) of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM) show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.
  •  
36.
  • Clerbaux, C., et al. (författare)
  • CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 2569-2594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.
  •  
37.
  •  
38.
  • Ejiri, M.K., et al. (författare)
  • Validation of the Improved Limb Atmospheric Spectrometer-II (ILAS-II) Version 1.4 nitrous oxide and methane profiles
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:D22
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assesses polar stratospheric nitrous oxide (N(2)O) and methane (CH(4)) data from the Improved Limb Atmospheric Spectrometer-II (ILAS-II) on board the Advanced Earth Observing Satellite-II (ADEOS-II) retrieved by the Version 1.4 retrieval algorithm. The data were measured between January and October 2003. Vertical profiles of ILAS-II volume mixing ratio (VMR) data are compared with data from two balloon-borne instruments, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) and the MkIV instrument, as well as with two satellite sensors, the Odin Sub-Millimetre Radiometer (SMR) for N(2)O and the Halogen Occultation Experiment (HALOE) for CH(4). Relative percentage differences between the ILAS-II and balloon/satellite data and their median values are calculated in 10-ppbv-wide bins for N(2)O (from 0 to 400 ppbv) and in 0.05-ppmv-wide bins for CH(4) (from 0 to 2 ppmv) in order to assess systematic differences between the ILAS-II and balloon/satellite data. According to this study, the characteristics of the ILAS-II Version 1.4 N(2)O and CH(4) data differ between hemispheres. For ILAS-II N(2)O VMR larger than 250 ppbv, the ILAS-II N(2)O agrees with the balloon/SMR N(2)O within +/- 20% in both hemispheres. The ILAS-II N(2)O in the VMR range from 30-50 to 250 ppbv (corresponding to altitudes of similar to 17-30 km in the Northern Hemisphere (NH, mainly outside the polar vortex) and similar to 13-21 km in the Southern Hemisphere (SH, mainly inside the polar vortex) is smaller by similar to 10-30% than the balloon/SMR N(2)O. For ILAS-II N(2)O VMR smaller than 30 ppbv (>similar to 21 km) in the SH, the differences between the ILAS-II and SMR N(2)O are within +/- 10 ppbv. For ILAS-II CH(4) VMR larger than 1 ppmv (similar to 30 km) and the ILAS-II CH(4) for its VMR smaller than 1 ppmv (>similar to 25 km) only in the NH, are abnormally small compared to the balloon/satellite data.
  •  
39.
  • El Amraoui, L., et al. (författare)
  • Assimilation of Odin/SMR and O3 and N2O Measurements in a Three-dimensional Chemistry Transport Model
  • 2004
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 109:D22, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for assimilating observations of long-lived species such as ozone (O-3) and nitrous oxide (N2O) in a three-dimensional chemistry transport model (3D-CTM) is described. The model is forced by the temperature and wind analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). The O-3 and N2O fields used in this study are obtained from the Sub-Millimeter Radiometer (SMR) aboard the Odin satellite. The assimilation technique used is the sequential statistical interpolation approach. The parametrization of the error covariance matrix of the model forecast field is described. A sensitivity study of the system parameters is done in terms of the OMF (observation minus forecast) vector also called "innovation'' vector and in terms of the chi(2) (chi-square) test. The effect of the correlation distances is critical for the assimilated field. The RMS ( root mean square) of the OMF for the correlation distances is minimal for values of 1500 km in the meridional direction and 500 km in the zonal direction for both O-3 and N2O. The treatment of the meridional distance as a function of latitude does not reveal an important improvement. The chi(2) diagnostic shows that the asymptotic value of the model error ( the model error of saturation) is optimal for the value of 12.5% for O-3 and 18% for N2O. We demonstrate the applicability of the developed assimilation method for the Odin/SMR data. We also present first results of the assimilation of Odin/SMR ozone and nitrous oxide for the period from 22 December 2001 to 17 January 2002.
  •  
40.
  • Fytterer, Tilo, et al. (författare)
  • Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:6, s. 3327-3338
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements from 2002 to 2011 by three inde-pendent satellite instruments, namely MIPAS, SABER, andSMR on board the ENVISAT, TIMED, and Odin satellitesare used to investigate the intra-seasonal variability of strato-spheric and mesospheric O3 volume mixing ratio (vmr) in-side the Antarctic polar vortex due to solar and geomagneticactivity. In this study, we individually analysed the relativeO3 vmr variations between maximum and minimum condi-tions of a number of solar and geomagnetic indices (F10.7cm solar radio flux, Ap index, ≥2 MeV electron flux). Theindices are 26-day averages centred at 1 April, 1 May, and1 June while O3 is based on 26-day running means from1 April to 1 November at altitudes from 20 to 70 km. Dur-ing solar quiet time from 2005 to 2010, the composite ofall three instruments reveals an apparent negative O3 sig-nal associated to the geomagnetic activity (Ap index) around1 April, on average reaching amplitudes between −5 and−10 % of the respective O3 background. The O3 responseexceeds the significance level of 95 % and propagates down-wards throughout the polar winter from the stratopause downto ∼ 25 km. These observed results are in good qualitativeagreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes par-ticle impact ionisation.
  •  
41.
  • Gabriel, A., et al. (författare)
  • Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001-2010
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:18, s. 9865-9885
  • Tidskriftsartikel (refereegranskat)abstract
    • Stationary wave patterns in middle atmospheric ozone (O(3)) and water vapour (H(2)O) are an important factor in the atmospheric circulation, but there is a strong gap in diagnosing and understanding their configuration and origin. Based on Odin satellite data from 2001 to 2010 we investigate the stationary wave patterns in O(3) and H(2)O as indicated by the seasonal long-term means of the zonally asymmetric components O(3)* = O(3)-[O(3)] and H(2)O* = H(2)O-[H(2)O] ([O(3)], [H(2)O]: zonal means). At mid-and polar latitudes we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10-20% of the zonal mean values. During winter, the wave one in O(3)* shows a maximum over the North Pacific/Aleutians and a minimum over the North Atlantic/Northern Europe and a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H(2)O* extends from the lower stratosphere to the upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave patterns occur mainly during southern spring. By comparing the observed wave patterns in O(3)* and H(2)O* with a linear solution of a steady-state transport equation for a zonally asymmetric tracer component we find that these wave patterns are primarily due to zonally asymmetric transport by geostrophically balanced winds, which are derived from observed temperature profiles. In addition temperature-dependent photochemistry contributes substantially to the spatial structure of the wave pattern in O(3)*. Further influences, e. g., zonal asymmetries in eddy mixing processes, are discussed.
  •  
42.
  • Hassler, B., et al. (författare)
  • Past changes in the vertical distribution of ozone - Part 1: Measurement techniques, uncertainties and availability
  • 2014
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 7:5, s. 1395-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
  •  
43.
  • Hegglin, Michaela I., et al. (författare)
  • Overview and update of the SPARC Data Initiative: comparison of stratospheric composition measurements from satellite limb sounders
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 13:5, s. 1855-1903
  • Forskningsöversikt (refereegranskat)abstract
    • The Stratosphere-troposphere Processes and their Role in Climate (SPARC) Data Initiative (SPARC, 2017) performed the first comprehensive assessment of currently available stratospheric composition measurements obtained from an international suite of space-based limb sounders. The initiative's main objectives were (1) to assess the state of data availability, (2) to compile time series of vertically resolved, zonal monthly mean trace gas and aerosol fields, and (3) to perform a detailed intercomparison of these time series, summarizing useful information and highlighting differences among datasets. The datasets extend over the region from the upper troposphere to the lower mesosphere (300-0.1 hPa) and are provided on a common latitude-pressure grid. They cover 26 different atmospheric constituents including the stratospheric trace gases of primary interest, ozone (O-3) and water vapor (H2O), major long-lived trace gases (SF6, N2O, HF, CCl3F, CCl2F2, NO y), trace gases with intermediate lifetimes (HCl, CH4, CO, HNO3), and shorter-lived trace gases important to stratospheric chemistry including nitrogen-containing species (NO, NO2, NOx, N2O5, HNO4), halogens (BrO, ClO, ClONO2, HOCl), and other minor species (OH, HO2, CH2O, CH3CN), and aerosol. This overview of the SPARC Data Initiative introduces the updated versions of the SPARC Data Initiative time series for the extended time period 1979-2018 and provides information on the satellite instruments included in the assessment: LIMS, SAGE I/II/III, HALOE, UARS-MLS, POAM II/III, OSIRIS, SMR, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACEMAESTRO, Aura-MLS, HIRDLS, SMILES, and OMPS-LP. It describes the Data Initiative's top-down climatological validation approach to compare stratospheric composition measurements based on zonal monthly mean fields, which provides upper bounds to relative inter-instrument biases and an assessment of how well the instruments are able to capture geophysical features of the stratosphere. An update to previously published evaluations of O-3 and H2O monthly mean time series is provided. In addition, example trace gas evaluations of methane (CH4), carbon monoxide (CO), a set of nitrogen species (NO, NO2, and HNO3), the reactive nitrogen family (NOy), and hydroperoxyl (HO2) are presented. The results highlight the quality, strengths and weaknesses, and representativeness of the different datasets. As a summary, the current state of our knowledge of stratospheric composition and variability is provided based on the overall consistency between the datasets. As such, the SPARC Data Initiative datasets and evaluations can serve as an atlas or reference of stratospheric composition and variability during the "golden age" of atmospheric limb sounding. The updated SPARC Data Initiative zonal monthly mean time series for each instrument are publicly available and accessible via the Zenodo data archive (Hegglin et al., 2020).
  •  
44.
  • Hegglin, M. I., et al. (författare)
  • SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:20, s. 0148-0227
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978–2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the “climatological” validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross sections and seasonal cycles in the tropical and extratropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of interannual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and midlatitudes, with a relative uncertainty of ±2–6% (as quantified by the standard deviation of the instruments' multiannual means). The uncertainty increases toward the polar regions (±10–15%), the mesosphere (±15%), and the upper troposphere/lower stratosphere below 100 hPa (±30–50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multiannual (1998–2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (±14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor data set shows consistently lower values than most other data sets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extratropics. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.
  •  
45.
  • Hegglin, M. I., et al. (författare)
  • Vertical structure of stratospheric water vapour trends derived from merged satellite data
  • 2014
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 7:10, s. 768-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.
  •  
46.
  • Hubert, D., et al. (författare)
  • Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:6, s. 2497-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40km the satellite ozone measurement biases are smaller than ±5%, the short-term variabilities are less than 5-12% and the drifts are at most ±5%decade-1 (or even ±3%decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
  •  
47.
  • Jin, J.J., et al. (författare)
  • Co-located ACE-FTS and Odin/SMR stratospheric-mesospheric CO 2004 measurements and comparison with a GCM
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:15
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a comparison of co-located and near simultaneous CO measurements from January to May, 2004 and from the Arctic to southern polar regions using the ACE-FTS, in solar occultation mode, and the Odin/SMR, which measures atmospheric emission. We find that there is excellent agreement between the two instruments at the locations investigated over 4 orders of magnitude from the lower stratosphere to the lower thermosphere. There is also good agreement with the CMAM model simulation from 20 km to 90 km in sub-tropical and tropical latitudes but poorer agreement in the upper stratosphere and lower mesosphere in winter polar regions. For the Arctic in March 2004 this can be attributed, at least partly, to the unique dynamical processes in the stratosphere in the winter of 2003 - 2004. Clearly CO measurements from these instruments will provide a useful tool for testing model transport from the troposphere to the thermosphere.
  •  
48.
  • Jin, J.J., et al. (författare)
  • Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 3233-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi-biennial oscillation (QBO) in the upper stratosphere, whereas, the CMAM does not have QBO included. This study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.
  •  
49.
  • Jones, Ashley, 1977, et al. (författare)
  • Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5321-5333
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous analyses of satellite and ground-based measurements of hydrogen chloride (HCl) and chlorine monoxide (ClO) have suggested that total inorganic chlorine in the upper stratosphere is on the decline. We create HCl and ClO time series using satellite data sets extended to November 2008, so that an update can be made on the long term evolution of these two species. We use the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data for the HCl analysis, and the Odin Sub-Millimetre Radiometer (SMR) and the Aura Microwave Limb Sounder (Aura-MLS) measurements for the study of ClO. Altitudes between 35 and 45 km and two mid-latitude bands: 30° S–50° S and 30° N–50° N, for HCl, and 20° S–20° N for ClO and HCl are studied. ACE-FTS and HALOE HCl anomaly time series (with QBO and seasonal contributions removed) are combined to produce all instrument average time series, which show HCl to be reducing from peak 1997 values at a linear estimated rate of −5.1 % decade−1 in the Northern Hemisphere and −5.2 % decade−1 in the Southern Hemisphere, while the tropics show a linear trend of −5.8 % per decade (although we do not remove the QBO contribution there due to sparse data). Trend values are significantly different from a zero trend at the 2 sigma level. ClO is decreasing in the tropics by −7.1 % ± 7.8 % decade−1 based on measurements made from December 2001 to November 2008. The statistically significant downward trend found in HCl after 1997 and the apparent downward ClO trend since 2001 (although not statistically significant) confirm how effective the 1987 Montreal protocol objectives and its amendments have been in reducing the total amount of inorganic chlorine.
  •  
50.
  • Jones, N., et al. (författare)
  • Stratomesospheric CO measured by a ground-based Fourier Transform Spectrometer over Poker Flat, Alaska: Comparisons with Odin/SMR and a 2-D model
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D20
  • Tidskriftsartikel (refereegranskat)abstract
    • The interseasonal variability of stratomesospheric CO is reported from Poker Flat, Alaska, using spectra from a ground-based Fourier Transform Spectrometer (gb-FTS) for the time period from 2000 to 2004. The CO spectra were analyzed using an optimal estimation technique that separates the tropospheric and stratospheric/mesospheric components into partial columns. The distribution of CO in the polar winter is such that the gb-FTS retrieved partial column is weighted to the mesosphere. The gb-FTS data are compared with measurements of partial column CO from the Sub-Millimeter Radiometer on board the Odin satellite and shown to be in very good agreement despite the relatively small sample size. The mean difference of the two data sets indicates a small positive bias (7.6 +/- 6%) in favor of the Odin data, with a correlation coefficient, r(2) = 0.91. The gb-FTS data indicate that there is a strong seasonal dependence of the CO partial column that is consistent with known winter polar thermospheric descent of CO enriched air. Year-to-year variability is explained in terms of mesospheric wind dynamics, which show 2004 and components of 2002 were affected by earlier than expected breakdown (30 +/- 13 d) of the winter polar circulation compared with 2000 to 2003. Finally, the measured CO data is compared with a 2-D chemical transport model that gives support to the idea that springtime polar mesospheric CO is driven by meridional winds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 118
Typ av publikation
tidskriftsartikel (98)
konferensbidrag (14)
rapport (2)
forskningsöversikt (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (104)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Urban, Joachim, 1964 (115)
Murtagh, Donal, 1959 (82)
Eriksson, Patrick, 1 ... (27)
Walker, K. A. (26)
Kasai, Y. (26)
Dupuy, E. (23)
visa fler...
Ricaud, P. (22)
von Clarmann, T. (16)
Froidevaux, L. (15)
Baron, P. (14)
Le Flochmoën, E. (14)
De La Noë, J. (14)
Stiller, G. (14)
Rozanov, A. (13)
Bernath, P. F. (11)
Boone, C. D. (11)
Olberg, Michael, 195 ... (10)
Frisk, U. (10)
Sagawa, H. (9)
Santee, M. L. (9)
Brohede, Samuel, 197 ... (9)
Funke, B. (9)
Stiller, G. P. (9)
Degenstein, D. (8)
Barret, B. (8)
Jones, Ashley, 1977 (8)
Höpfner, M. (8)
Kiefer, M. (7)
Livesey, N.J. (7)
Kikuchi, K (6)
Burrows, J. (6)
Strong, K. (6)
McElroy, C. T. (6)
Ochiai, S. (6)
Shiotani, M. (6)
Khosrawi, F. (6)
Perot, Kristell, 198 ... (6)
Llewellyn, E. J. (6)
Glatthor, N. (6)
Schneider, M. (5)
Jones, A. (5)
Gille, J (5)
Linden, A (5)
Mahieu, E. (5)
Sato, T.O. (5)
Manabe, T. (5)
Waters, J.W. (5)
Tremblin, P. (5)
Bourassa, A. E. (5)
Lambert, A (5)
visa färre...
Lärosäte
Chalmers tekniska högskola (116)
Stockholms universitet (11)
Luleå tekniska universitet (7)
Kungliga Tekniska Högskolan (2)
Uppsala universitet (2)
Umeå universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (118)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (115)
Teknik (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy