SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vainio P) "

Search: WFRF:(Vainio P)

  • Result 1-42 of 42
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tabassum, R, et al. (author)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Journal article (peer-reviewed)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
2.
  •  
3.
  • Hadid, L. Z., et al. (author)
  • BepiColombo's Cruise Phase : Unique Opportunity for Synergistic Observations
  • 2021
  • In: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 8
  • Journal article (peer-reviewed)abstract
    • The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU-0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.
  •  
4.
  •  
5.
  • Milillo, A., et al. (author)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Research review (peer-reviewed)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
6.
  • Pearce, Neil E, et al. (author)
  • IARC Monographs : 40 Years of Evaluating Carcinogenic Hazards to Humans
  • 2015
  • In: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 507-514
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Recently the International Agency for Research on Cancer (IARC) Programme for the Evaluation of Carcinogenic Risks to Humans has been criticized for several of its evaluations, and also the approach used to perform these evaluations. Some critics have claimed that IARC Working Groups' failures to recognize study weaknesses and biases of Working Group members have led to inappropriate classification of a number of agents as carcinogenic to humans.OBJECTIVES: The authors of this paper are scientists from various disciplines relevant to the identification and hazard evaluation of human carcinogens. We have examined here criticisms of the IARC classification process to determine the validity of these concerns. We review the history of IARC evaluations and describe how the IARC evaluations are performed.DISCUSSION: We conclude that these recent criticisms are unconvincing. The procedures employed by IARC to assemble Working Groups of scientists from the various discipline and the techniques followed to review the literature and perform hazard assessment of various agents provide a balanced evaluation and an appropriate indication of the weight of the evidence. Some disagreement by individual scientists to some evaluations is not evidence of process failure. The review process has been modified over time and will undoubtedly be altered in the future to improve the process. Any process can in theory be improved, and we would support continued review and improvement of the IARC processes. This does not mean, however, that the current procedures are flawed.CONCLUSIONS: The IARC Monographs have made, and continue to make, major contributions to the scientific underpinning for societal actions to improve the public's health.
  •  
7.
  • Vaivads, Andris, et al. (author)
  • Turbulence Heating ObserveR - satellite mission proposal
  • 2016
  • In: JOURNAL OF PLASMA PHYSICS. - 0022-3778. ; 82
  • Journal article (peer-reviewed)abstract
    • The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth's magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space - magnetosheath, shock, foreshock and pristine solar wind - featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the 'Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)'. THOR has been selected by European Space Agency (ESA) for the study phase.
  •  
8.
  •  
9.
  • Dimmock, Andrew P., et al. (author)
  • Backstreaming ions at a high Mach number interplanetary shock : Solar Orbiter measurements during the nominal mission phase
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Journal article (peer-reviewed)abstract
    • Context: Solar Orbiter, a mission developed by the European Space Agency, explores in situ plasma across the inner heliosphere while providing remote-sensing observations of the Sun. The mission aims to study the solar wind, but also transient structures such as interplanetary coronal mass ejections and stream interaction regions. These structures often contain a leading shock wave that can differ from other plasma shock waves, such as those around planets. Importantly, the Mach number of these interplanetary shocks is typically low (1-3) compared to planetary bow shocks and most astrophysical shocks. However, our shock survey revealed that on 30 October 2021, Solar Orbiter measured a shock with an Alfven Mach number above 6, which can be considered high in this context.Aims: Our study examines particle observations for the 30 October 2021 shock. The particles provide clear evidence of ion reflection up to several minutes upstream of the shock. Additionally, the magnetic and electric field observations contain complex electromagnetic structures near the shock, and we aim to investigate how they are connected to ion dynamics. The main goal of this study is to advance our understanding of the complex coupling between particles and the shock structure in high Mach number regimes of interplanetary shocks.Methods: We used observations of magnetic and electric fields, probe-spacecraft potential, and thermal and energetic particles to characterize the structure of the shock front and particle dynamics. Furthermore, ion velocity distribution functions were used to study reflected ions and their coupling to the shock. To determine shock parameters and study waves, we used several methods, including cold plasma theory, singular-value decomposition, minimum variance analysis, and shock Rankine-Hugoniot relations. To support the analysis and interpretation of the experimental data, test-particle analysis, and hybrid particle in-cell simulations were used.Results: The ion velocity distribution functions show clear evidence of particle reflection in the form of backstreaming ions several minutes upstream. The shock structure has complex features at the ramp and whistler precursors. The backstreaming ions may be modulated by the complex shock structure, and the whistler waves are likely driven by gyrating ions in the foot. Supra-thermal ions up to 20 keV were observed, but shock-accelerated particles with energies above this were not.
  •  
10.
  • Jebaraj, I. C., et al. (author)
  • Relativistic electron beams accelerated by an interplanetary shock
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 680
  • Journal article (peer-reviewed)abstract
    • Context: Collisionless shock waves have long been considered to be among the most prolific particle accelerators in the universe. Shocks alter the plasma they propagate through, and often exhibit complex evolution across multiple scales. Interplanetary (IP) traveling shocks have been recorded in situ for over half a century and act as a natural laboratory for experimentally verifying various aspects of large-scale collisionless shocks. A fundamentally interesting problem in both heliophysics and astrophysics is the acceleration of electrons to relativistic energies (> 300 keV) by traveling shocks.Aims: The reason for an incomplete understanding of electron acceleration at IP shocks is due to scale-related challenges and a lack of instrumental capabilities. This Letter presents the first observations of field-aligned beams of relativistic electrons upstream of an IP shock, observed thanks to the instrumental capabilities of Solar Orbiter. This study presents the characteristics of the electron beams close to the source and contributes to the understanding of their acceleration mechanism.Methods: On 25 July 2022, Solar Orbiter encountered an IP shock at 0.98 AU. The shock was associated with an energetic storm particle event, which also featured upstream field-aligned relativistic electron beams observed 14 min prior to the actual shock crossing. The distance of the beam's origin was investigated using a velocity dispersion analysis (VDA). Peak-intensity energy spectra were anaylzed and compared with those obtained from a semi-analytical fast-Fermi acceleration model.Results: By leveraging Solar Orbiter's high temporal resolution Energetic Particle Detector (EPD), we successfully showcase an IP shock's ability to accelerate relativistic electron beams. Our proposed acceleration mechanism offers an explanation for the observed electron beam and its characteristics, while we also explore the potential contributions of more complex mechanisms.
  •  
11.
  • Jonauskaite, D., et al. (author)
  • Universal Patterns in Color-Emotion Associations Are Further Shaped by Linguistic and Geographic Proximity
  • 2020
  • In: Psychological Science. - : SAGE Publications Inc.. - 0956-7976 .- 1467-9280. ; 31:10, s. 1245-1260
  • Journal article (peer-reviewed)abstract
    • Many of us “see red,” “feel blue,” or “turn green with envy.” Are such color-emotion associations fundamental to our shared cognitive architecture, or are they cultural creations learned through our languages and traditions? To answer these questions, we tested emotional associations of colors in 4,598 participants from 30 nations speaking 22 native languages. Participants associated 20 emotion concepts with 12 color terms. Pattern-similarity analyses revealed universal color-emotion associations (average similarity coefficient r =.88). However, local differences were also apparent. A machine-learning algorithm revealed that nation predicted color-emotion associations above and beyond those observed universally. Similarity was greater when nations were linguistically or geographically close. This study highlights robust universal color-emotion associations, further modulated by linguistic and geographic factors. These results pose further theoretical and empirical questions about the affective properties of color and may inform practice in applied domains, such as well-being and design. © The Author(s) 2020.
  •  
12.
  • Kollhoff, A., et al. (author)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Blanco-Cano, Xochitl, et al. (author)
  • Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
  • 2018
  • In: Annales Geophysicae. - : COPERNICUS GESELLSCHAFT MBH. - 0992-7689 .- 1432-0576. ; 36:4, s. 1081-1097
  • Journal article (peer-reviewed)abstract
    • In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.
  •  
20.
  • Boves, L., et al. (author)
  • Resources for Speech Research: Present and Future Infrastructure Needs
  • 2009
  • In: Proceedings of the 10th Annual Conference of the International Speech Communication Association, INTERSPEECH 2009. - Brighton, UK. - 9781615676927 ; , s. 1803-1806
  • Conference paper (peer-reviewed)abstract
    • This paper introduces the EU-FP7 project CLARIN, a joint effort of over 150 institutions in Europe, aimed at the creation of a sustainable language resources and technology infrastructure for the humanities and social sciences research community. The paper briefly introduces the vision behind the project and how it relates to speech research with a focus on the contributions that CLARIN can and will make to research in spoken language processing.
  •  
21.
  • Disch, Sabrina, et al. (author)
  • Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation
  • 2013
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 5:9, s. 3969-3975
  • Journal article (peer-reviewed)abstract
    • The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.
  •  
22.
  • Dish, Sabina, et al. (author)
  • Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering
  • 2012
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14, s. 013025-
  • Journal article (peer-reviewed)abstract
    • By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape-dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for similar to 9 nm nanospheres and similar to 8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles.
  •  
23.
  • Kautonen, Teemu, et al. (author)
  • ‘Involuntary self-employment’ as a public policy issue : A cross-country European review
  • 2010
  • In: International Journal of Entrepreneurial Behaviour & Research. - : Emerald. - 1355-2554 .- 1758-6534. ; 16:2, s. 112-129
  • Journal article (peer-reviewed)abstract
    • Purpose – There is growing political interest in new forms of precarious self-employment located in a “grey area” between employment and self-employment. A wide range of concepts has been used to debate this issue, and this paper aims to clarify these debates through the concept of involuntary self-employment.Design/methodology/approach – The paper reviews the empirical, conceptual and legal-policy approaches to involuntary self-employment via three country case studies in Finland, Germany and the UK. A range of relevant domestic academic literature, articles in the media, selected key expert interviews, and policy and legal documents are employed.Findings – Conceptual clarity regarding involuntary self-employment is achieved through a discussion of two aspects of the phenomenon: the characteristics of involuntariness from a motives-based perspective, and the legal/economic perspectives and policy issues. The motives-based analysis argues that involuntariness as such does not seem to have severe implications on the individuals' well being, given that the individual earns a satisfactory livelihood from her or his business activities. The discussion of the characteristics of and regulation related to working arrangements in the “grey area” between employment and self-employment, where the self-employed individual is strongly dependent on the principal, shows that it is very difficult to regulate quasi self-employment without harming “voluntary” forms of enterprise and inter-firm cooperation at the same time.Originality/value – The key contribution of the paper is to facilitate a foundation for subsequent empirical research and policy development.
  •  
24.
  • Maezawa, Yoshiro, et al. (author)
  • Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS
  • 2014
  • In: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:11, s. 2459-2470
  • Journal article (peer-reviewed)abstract
    • Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the perinatal period with major cardiopulmonary defects, we generated a conditional Tcf21 knockout mouse to explore the role of this transcription factor in podocytes in vivo. Tcf21 was deleted from podocytes and podocyte progenitors using podocin-cre (podTcf21) and wnt4-cre (wnt4creTcf21) driver strains, respectively. Loss of Tcf21 from capillary-loop stage podocytes (podTcf21) results in simplified glomeruli with a decreased number of endothelial and mesangial cells. By 5 weeks of age, 40% of podTcf21 mice develop massive proteinuria and lesions similar to FSGS. Notably, the remaining 60% of mice do not develop proteinuria even when aged to 8 months. By contrast, earlier deletion of Tcf21 from podocyte precursors (wnt4creTcf21) results in a profound developmental arrest of podocyte differentiation and renal failure in 100% of mice during the perinatal period. Taken together, our results demonstrate a critical role for Tcf21 in the differentiation and maintenance of podocytes. Identification of direct targets of this transcription factor may provide new therapeutic avenues for proteinuric renal disease, including FSGS.
  •  
25.
  • Mohl, Melinda, et al. (author)
  • Titania nanofibers in gypsum composites : an antibacterial and cytotoxicology study
  • 2014
  • In: Journal of Material Chemistry B. - : Royal Society of Chemistry. - 2050-750X .- 2050-7518. ; 2:10, s. 1307-1316
  • Journal article (peer-reviewed)abstract
    • Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.
  •  
26.
  •  
27.
  •  
28.
  • Pranzas, P. Klaus, et al. (author)
  • Characterization of Hydrogen Storage Materials and Systems with Photons and Neutrons
  • 2011
  • In: Advanced Engineering Materials. - : Wiley. - 1527-2648 .- 1438-1656. ; 13:8, s. 730-736
  • Journal article (peer-reviewed)abstract
    • Complex hydrides are very promising candidates for future light-weight solid state hydrogen storage materials. The present work illustrates detailed characterization of such novel hydride materials on different size scales by the use of synchrotron radiation and neutrons. The comprehensive analysis of such data leads to a deep understanding of the ongoing processes and mechanisms. The reaction pathways during hydrogen desorption and absorption are identified by in situ X-ray diffraction (XRD). Function and size of additive phases are estimated using X-ray absorption spectroscopy (XAS) and anomalous small-angle X-ray scattering (ASAXS). The structure of the metal hydride matrix is characterized using (ultra) small-angle neutron scattering (SANS/USANS). The hydrogen distribution in tanks filled with metal hydride material is studied with neutron computerized tomography (NCT). The results obtained by the different analysis methods are summarized in a final structural model. The complementary information obtained by these different methods is essential for the understanding of the various sorption processes in light metal hydrides and hydrogen storage tanks.
  •  
29.
  • Retinò, A., et al. (author)
  • Particle energization in space plasmas : towards a multi-point, multi-scale plasma observatory
  • 2021
  • In: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Journal article (peer-reviewed)abstract
    • This White Paper outlines the importance of addressing the fundamental science theme “How are charged particles energized in space plasmas” through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection, waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity, and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class Plasma Observatory consisting of at least seven spacecraft covering fluid, ion, and electron scales are needed. The Plasma Observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with a very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS, and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2050 science programme, it would further strengthen the European scientific and technical leadership in this important field.
  •  
30.
  •  
31.
  •  
32.
  • Soucek, J., et al. (author)
  • EMC Aspects Of Turbulence Heating Observer (THOR) Spacecraft
  • 2016
  • In: Proceedings Of 2016 Esa Workshop On Aerospace Emc (Aerospace Emc). - : Institute of Electrical and Electronics Engineers (IEEE). - 9789292213039
  • Conference paper (peer-reviewed)abstract
    • Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft-generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Trotta, Domenico, et al. (author)
  • Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:2
  • Journal article (peer-reviewed)abstract
    • The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V-B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (similar to 100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.
  •  
38.
  • Trotta, D., et al. (author)
  • Three-dimensional modelling of the shock-turbulence interaction
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 525:2, s. 1856-1866
  • Journal article (peer-reviewed)abstract
    • The complex interaction between shocks and plasma turbulence is extremely important to address crucial features of energy conversion in a broad range of astrophysical systems. We study the interaction between a supercritical, perpendicular shock and pre-existing, fully developed plasma turbulence, employing a novel combination of magnetohydrodynamic and small-scale, hybrid-kinetic simulations where a shock is propagating through a turbulent medium. The variability of the shock front in the unperturbed case and for two levels of upstream fluctuations is addressed. We find that the behaviour of shock ripples, i.e. shock surface fluctuations with short (a few ion skin depths, di) wavelengths, is modified by the presence of pre-existing turbulence, which also induces strong corrugations of the shock front at larger scales. We link this complex behaviour of the shock front and the shock downstream structuring with the proton temperature anisotropies produced in the shock-turbulence system. Finally, we put our modelling effort in the context of spacecraft observations, elucidating the role of novel cross-scale, multispacecraft measurements in resolving shock front irregularities at different scales. These results are relevant for a broad range of astrophysical systems characterized by the presence of shock waves interacting with plasma turbulence.
  •  
39.
  •  
40.
  •  
41.
  • Welp, EA, et al. (author)
  • Environmental risk factors of breast cancer
  • 1998
  • In: Scandinavian journal of work, environment & health. - : Scandinavian Journal of Work, Environment and Health. - 0355-3140 .- 1795-990X. ; 24:1, s. 3-7
  • Journal article (peer-reviewed)
  •  
42.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-42 of 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view