SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vakhrushev S. Y.) "

Sökning: WFRF:(Vakhrushev S. Y.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kawahara, R., et al. (författare)
  • Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 18, s. 1304-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics. This analysis presents the results of a community-based evaluation of existing software for large-scale glycopeptide data analysis.
  •  
2.
  • Iversen, M. B., et al. (författare)
  • An innate antiviral pathway acting before interferons at epithelial surfaces
  • 2016
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 17:2, s. 150-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.
  •  
3.
  • Bagdonaite, I., et al. (författare)
  • A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1
  • 2015
  • Ingår i: Plos Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses.
  •  
4.
  • Bagdonaite, I., et al. (författare)
  • Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 291:23, s. 12014-12028
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
  •  
5.
  •  
6.
  • Vakhrushev, Y, et al. (författare)
  • RBM20-Associated Ventricular Arrhythmias in a Patient with Structurally Normal Heart
  • 2021
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 12:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • RBM20 (RNA-binding motif protein 20) is a splicing factor targeting multiple cardiac genes, and its mutations cause cardiomyopathies. Originally, RBM20 mutations were discovered to cause the development of dilated cardiomyopathy by erroneous splicing of the gene TTN (titin). Titin is a giant protein found in a structure of the sarcomere that functions as a molecular spring and provides a passive stiffness to the cardiomyocyte. Later, RBM20 mutations were also described in association with arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Here, we present a clinical case of a rare arrhythmogenic phenotype and no structural cardiac abnormalities associated with a RBM20 genetic variant of uncertain significance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy