SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van Mooy Benjamin A. S.) "

Sökning: WFRF:(Van Mooy Benjamin A. S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schouten, Stefan, et al. (författare)
  • An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures
  • 2013
  • Ingår i: Geochemistry Geophysics Geosystems. - 1525-2027. ; 14:12, s. 5263-5285
  • Tidskriftsartikel (refereegranskat)abstract
    • Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility +/- 3-4 degrees C when translated to temperature) but a large spread in BIT measurements (reproducibility +/- 0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0 degrees C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the true (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.
  •  
2.
  • Diaz, Ben P., et al. (författare)
  • Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure. Phytoplankton are important primary producers. Here the authors investigate phytoplankton physiological changes associated with bloom phases and mixing regimes in the North Atlantic, finding that stratification and deep mixing shape accumulation rates by altering physiology and viral production.
  •  
3.
  • Kharbush, Jenan J., et al. (författare)
  • Particulate Organic Carbon Deconstructed : Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the marine carbon cycle. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve our understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what we can measure, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. Here we provide a brief overview of the autochthonous, allochthonous, and anthropogenic components comprising POC in the ocean. In addition, we highlight key needs for future research that will enable us to more effectively connect diverse data sources and link the identity and structural diversity of POC to its sources and transformation processes.
  •  
4.
  • Farnelid, Hanna, 1983-, et al. (författare)
  • Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre
  • 2019
  • Ingår i: The ISME Journal. - : Nature Publishing Group. - 1751-7362 .- 1751-7370. ; 13:1, s. 170-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N-2)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre. The bacterial community and composition of diazotrophs associated with individual and bulk sinking particles was assessed using 16S rRNA and nifH gene amplicon sequencing. The bacterial community composition in bulk particles remained remarkably consistent throughout time and space while large variations of individually picked particles were observed. This difference suggests that unique biogeochemical conditions within individual particles may offer distinct ecological niches for specialized bacterial taxa. Compared to surrounding seawater, particle samples were enriched in different size classes of globally significant N-2-fixing cyanobacteria including Trichodesmium, symbionts of diatoms, and the unicellular cyanobacteria Crocosphaera and UCYN-A. The particles also contained nifH gene sequences of diverse non-cyanobacterial diazotrophs suggesting that particles could be loci for N-2 fixation by heterotrophic bacteria. The results demonstrate that diverse diazotrophs were present on particles and that new N may thereby be directly exported from surface waters on sinking particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy