SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vanderplanck Maryse) "

Sökning: WFRF:(Vanderplanck Maryse)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gekière, Antoine, et al. (författare)
  • Poison or Potion : Effects of Sunflower Phenolamides on Bumble Bees and Their Gut Parasite
  • 2022
  • Ingår i: Biology. - : MDPI AG. - 2079-7737. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific floral resources may help bees to face environmental challenges such as parasite infection, as recently shown for sunflower pollen. Whereas this pollen diet is known to be unsuitable for the larval development of bumble bees, it has been shown to reduce the load of a trypanosomatid parasite (Crithidia bombi) in the bumble bee gut. Recent studies suggested it could be due to phenolamides, a group of compounds commonly found in flowering plants. We, therefore, decided to assess separately the impacts of sunflower pollen and its phenolamides on a bumble bee and its gut parasite. We fed Crithidia-infected and -uninfected microcolonies of Bombus terrestris either with a diet of willow pollen (control), a diet of sunflower pollen (natural diet) or a diet of willow pollen supplemented with sunflower phenolamides (supplemented diet). We measured several parameters at both microcolony (i.e., food collection, parasite load, brood development and stress responses) and individual (i.e., fat body content and phenotypic variation) levels. As expected, the natural diet had detrimental effects on bumble bees but surprisingly, we did not observe any reduction in parasite load, probably because of bee species-specific outcomes. The supplemented diet also induced detrimental effects but by contrast to our a priori hypothesis, it led to an increase in parasite load in infected microcolonies. We hypothesised that it could be due to physiological distress or gut microbiota alteration induced by phenolamide bioactivities. We further challenged the definition of medicinal effects and questioned the way to assess them in controlled conditions, underlining the necessity to clearly define the experimental framework in this research field.
  •  
2.
  • Gerard, Maxence, et al. (författare)
  • Patterns of size variation in bees at a continental scale : does Bergmann's rule apply?
  • 2018
  • Ingår i: Oikos. - : Wiley-Blackwell. - 0030-1299 .- 1600-0706. ; 127:8, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Body size latitudinal clines have been widley explained by the Bergmann's rule in homeothermic vertebrates. However, there is no general consensus in poikilotherms organisms in particular in insects that represent the large majority of wildlife. Among them, bees are a highly diverse pollinators group with high economic and ecological value. Nevertheless, no comprehensive studies of species assemblages at a phylogenetically larger scale have been carried out even if they could identify the traits and the ecological conditions that generate different patterns of latitudinal size variation. We aimed to test Bergmann's rule for wild bees by assessing relationships between body size and latitude at continental and community levels. We tested our hypotheses for bees showing different life history traits (i.e. sociality and nesting behaviour). We used 142 008 distribution records of 615 bee species at 50 x 50 km (CGRS) grids across the West Palearctic. We then applied generalized least squares fitted linear model (GLS) to assess the relationship between latitude and mean body size of bees, taking into account spatial autocorrelation. For all bee species grouped, mean body size increased with higher latitudes, and so followed Bergmann's rule. However, considering bee genera separately, four genera were consistent with Bergmann's rule, while three showed a converse trend, and three showed no significant cline. All life history traits used here (i.e. solitary, social and parasitic behaviour; ground and stem nesting behaviour) displayed a Bergmann's cline. In general there is a main trend for larger bees in colder habitats, which is likely to be related to their thermoregulatory abilities and partial endothermy, even if a 'season length effect' (i.e. shorter foraging season) is a potential driver of the converse Bergmann's cline particularly in bumblebees.
  •  
3.
  • Sculfort, Ombeline, et al. (författare)
  • Specialized Metabolites in Floral Resources : Effects and Detection in Buff-Tailed Bumblebees
  • 2021
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The selection of appropriate food resources by bees is a critical aspect for the maintenance of their populations, especially in the current context of global change and pollinator decline. Wild bees have a sophisticated ability to forage selectively on specific resources, and can assess the quality of pollen using contact chemosensory perception (taste). While numerous studies have investigated the detection of pollen macronutrients in bees and their impact on bee health and reproductive success, only a few studies have described the gustatory responses of bees toward specialized metabolites. In addition, these studies mostly focused on the response to nectar and neglected pollen, which is the main food resource for both bee imagines and larvae. Whether bees have the ability to detect specialized toxic metabolites in pollen and then rapidly adapt their foraging behavior to avoid them is very little studied. In this study, we tested whether pollen specialized metabolites affect bumblebees at both the micro-colony and individual levels (i.e., bioassays using supplemented pollen), and whether foragers detect these specialized metabolites and potentially display an avoidance behavior (i.e., preference tests using supplemented syrup). Bumblebees were fed with either amygdalin-, scopolamine- or sinigrin-supplemented pollen diets in ratios that mimic 50%, 100%, and 200% of naturally occurring concentrations. We found no effect of these specialized metabolites on resource collection, reproductive success and stress response at the micro-colony level. At the individual level, bumblebees fed on 50%-amygdalin or 50%-scopolamine diets displayed the highest scores for damage to their digestive systems. Interestingly, during the preference tests, the solution with 50%-scopolamine displayed a phagostimulatory activity, whereas solution with 50%-amygdalin had a deterrent effect and could trigger an active avoidance behavior in bumblebees, with a faster proboscis retraction. Our results suggest that regulation of toxin intake is not as well-established and effective as the regulation of nutrient intake in bees. Bees are therefore not equally adapted to all specialized pollen metabolites that they can come into contact with.
  •  
4.
  • Vanderplanck, Maryse, et al. (författare)
  • Monitoring bee health in European agroecosystems using wing morphology and fat bodies
  • 2021
  • Ingår i: One Ecosystem. - : Pensoft Publishers. - 2367-8194. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy