SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vanneste T.) "

Sökning: WFRF:(Vanneste T.)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  • De Frenne, P., et al. (författare)
  • Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa
  • 2018
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 20:3, s. 619-626
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Beukes, EW, et al. (författare)
  • Exploring tinnitus heterogeneity
  • 2021
  • Ingår i: Progress in brain research. - Amsterdam : Elsevier. - 1875-7855. ; 260, s. 79-99, s. 79-99
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  • Biurrun, Idoia, et al. (författare)
  • Benchmarking plant diversity of Palaearctic grasslands and other open habitats
  • 2021
  • Ingår i: Journal of Vegetation Science. - Oxford : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology. © 2021 The Authors.
  •  
11.
  •  
12.
  •  
13.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
14.
  • Fernández-Fernández, P., et al. (författare)
  • Different effects of warming treatments in forests versus hedgerows on the understorey plant Geum urbanum
  • 2022
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 24:5, s. 734-744
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions.Adult individuals were transplanted in three forest–hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open-top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses.Temperature increases due to open-top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability.Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.
  •  
15.
  • Olsen, Jeanine L, et al. (författare)
  • The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 530:7590, s. 331-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
  •  
16.
  •  
17.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (17)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Schlee, W (10)
Langguth, B (10)
Kleinjung, T (10)
Vanneste, S (10)
DeRidder, D (8)
Cederroth, CR (7)
visa fler...
Gallus, S (4)
Canlon, B (4)
Hall, DA (4)
Brunet, Jörg (3)
Wang, Yun (3)
Mazurek, B (3)
Lugo, A (2)
De Ridder, D (2)
De Frenne, Pieter (2)
Diekmann, Martin (2)
Prentice, Honor C (2)
Pakeman, Robin J. (2)
Pielech, Remigiusz (2)
Boch, Steffen (2)
Lopez-Escamez, JA (2)
Baguley, DM (2)
Jentsch, Anke (2)
Bruun, Hans Henrik (2)
Neff, P. (2)
Boecking, B (2)
Brueggemann, P (2)
Becker, Thomas (2)
Hajek, Michal (2)
Natcheva, Rayna (2)
Bergamini, Ariel (2)
Graae, B. J. (2)
Vlaeyen, JWS (2)
Genitsaridi, E (2)
Trpchevska, N (2)
Biurrun, Idoia (2)
Dembicz, Iwona (2)
Gillet, François (2)
Kozub, Łukasz (2)
Marcenò, Corrado (2)
Reitalu, Triin (2)
Guarino, Riccardo (2)
Axmanová, Irena (2)
Bartha, Sándor (2)
Conradi, Timo (2)
Filibeck, Goffredo (2)
Jiménez-Alfaro, Borj ... (2)
Kuzemko, Anna (2)
Molnár, Zsolt (2)
Roleček, Jan (2)
visa färre...
Lärosäte
Karolinska Institutet (11)
Stockholms universitet (5)
Göteborgs universitet (3)
Lunds universitet (3)
Sveriges Lantbruksuniversitet (3)
Uppsala universitet (2)
visa fler...
Högskolan i Halmstad (2)
Linköpings universitet (2)
Umeå universitet (1)
Högskolan i Gävle (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Samhällsvetenskap (2)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy