SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varsani Ali) "

Sökning: WFRF:(Varsani Ali)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Nakamura, Rumi, et al. (författare)
  • Multiscale Currents Observed by MMS in the Flow Braking Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1260-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
  •  
5.
  • Nakamura, Rumi, et al. (författare)
  • Near-Earth plasma sheet boundary dynamics during substorm dipolarization
  • 2017
  • Ingår i: Earth Planets and Space. - : Springer Berlin/Heidelberg. - 1343-8832 .- 1880-5981. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL similar to -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another fieldaligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.
  •  
6.
  • Nakamura, Rumi, et al. (författare)
  • Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:2, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail. Plain Language Summary Magnetic reconnection is the process by which magnetic field lines coming from one region are broken and reconnected with magnetic field lines coming from another region. The simplest descriptions of magnetic reconnection are two dimensional, and a number of theoretical predictions have been made using the two-dimensional assumption. We study a magnetic reconnection event observed by the Magnetospheric Multiscale spacecraft on 11 July 2017 and find approximate agreement between the observations and the predictions of a two-dimensional model. The agreement includes the scale size of the reconnection region, details of the particle orbits, and the rate of reconnection.
  •  
7.
  • Voeroes, Zoltan, et al. (författare)
  • Magnetic Reconnection Within the Boundary Layer of a Magnetic Cloud in the Solar Wind
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The twisted local magnetic field at the front or rear regions of the magnetic clouds (MCs) associated with interplanetary coronal mass ejections (ICMEs) is often nearly opposite to the direction of the ambient interplanetary magnetic field. There is also observational evidence for magnetic reconnection (MR) outflows occurring within the boundary layers of MCs. In this study, a MR event located at the western flank of the MC occurring on October 3, 2000 is studied in detail. Both the large-scale geometry of the helical MC and the MR outflow structure are scrutinized in a detailed multipoint study. The ICME sheath is of hybrid propagation-expansion type. Here, the freshly reconnected open field lines are expected to slip slowly over the MC resulting in plasma mixing at the same time. As for MR, the current sheet geometry and the vertical motion of the outflow channel between ACE-Geotail-WIND spacecraft were carefully studied and tested. The main findings on MR include (a) first-time observation of non-Petschek-type slow-shock-like discontinuities in the inflow regions; (b) observation of turbulent Hall magnetic field associated with a Lorentz-force-deflected electron jet; (c) acceleration of protons by reconnection electric field and their back-scatter from the slow-shock-like discontinuity; (d) observation of relativistic electron near the MC inflow boundary/separatrix; these electron populations can presumably appear as a result of nonadiabatic acceleration, gradient B drift, and via acceleration in the electrostatic potential well associated with the Hall current system; and (e) observation of Doppler-shifted ion-acoustic and Langmuir waves in the MC inflow region.
  •  
8.
  • Volwerk, Martin, et al. (författare)
  • Statistical study of linear magnetic hole structures near Earth
  • 2021
  • Ingår i: Annales Geophysicae. - : COPERNICUS GESELLSCHAFT MBH. - 0992-7689 .- 1432-0576. ; 39:1, s. 239-253
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale mission (MMS1) data for 8 months in the winter periods of 2017-2018 and 2018-2019, when MMS had its apogee in the upstream solar wind of the Earth's bow shock, are used to study linear magnetic holes (LMHs). These LMHs are characterized by a magnetic depression of more than 50 % and a rotation of the background magnetic field of less then 10 degrees. A total of 406 LMHs are found and, based on their magnetoplasma characteristics, are split into three categories: cold (increase in density, little change in ion temperature), hot (increase in ion temperature, decrease in density) and sign change (at least one magnetic field component changes sign). The occurrence rate of LMHs is 2.3 per day. All LMHs are basically in pressure balance with the ambient plasma. Most of the linear magnetic holes are found in ambient plasmas that are stable against the mirror-mode generation, but only half of the holes are mirror-mode-stable inside.
  •  
9.
  • Voros, Zoltan, et al. (författare)
  • Energy Conversion at Kinetic Scales in the Turbulent Magnetosheath
  • 2019
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The process of conversion or dissipation of energy in nearly collisionless turbulent space plasma, is yet to be fully understood. The existing models offer different energy dissipation mechanisms which are based on wave particle interactions or non-resonant stochastic heating. There are other mechanisms of irreversible processes in space. For example, turbulence generated coherent structures, e.g., current sheets are ubiquitous in the solar wind and quasi-parallel magnetosheath. Reconnecting current sheets in plasma turbulence are converting magnetic energy to kinetic and thermal energy. It is important to understand how the multiple (reconnecting) current sheets contribute to spatial distribution of turbulent dissipation. However, detailed studies of such complex structures have been possible mainly via event studies in proper coordinate systems, in which the local inflow/outflow, electric and magnetic field directions, and gradients could be studied. Here we statistically investigate different energy exchange/dissipation (EED) measures defined in local magnetic field-aligned coordinates, as well as frame-independent scalars. The presented statistical comparisons based on the unique high-resolution MMS data contribute to better understanding of the plasma heating problem in turbulent space plasmas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy