SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vasavada A. R.) "

Sökning: WFRF:(Vasavada A. R.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ming, D.W., et al. (författare)
  • Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
  •  
3.
  • Farley, K.A., et al. (författare)
  • In situ radiometric and exposure age dating of the martian surface
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Haberle, R. M., et al. (författare)
  • Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 119:3, s. 440-453
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a preliminary interpretation of the Rover Environmental Monitoring Station (REMS) pressure data from the first 100 Martian solar days (sols) of the Mars Science Laboratory mission. The pressure sensor is performing well and has revealed the existence of phenomena undetected by previous missions that include possible gravity waves excited by evening downslope flows, relatively dust-free convective vortices analogous in structure to dust devils, and signatures indicative of the circulation induced by Gale Crater and its central mound. Other more familiar phenomena are also present including the thermal tides, generated by daily insolation variations, and the CO2 cycle, driven by the condensation and sublimation of CO2 in the polar regions. The amplitude of the thermal tides is several times larger than those seen by other landers primarily because Curiosity is located where eastward and westward tidal modes constructively interfere and also because the crater circulation amplifies the tides to some extent. During the first 100 sols tidal amplitudes generally decline, which we attribute to the waning influence of the Kelvin wave. Toward the end of the 100 sol period, tidal amplitudes abruptly increased in response to a nearby regional dust storm that did not expand to global scales. Tidal phases changed abruptly during the onset of this storm suggesting a change in the interaction between eastward and westward modes. When compared to Viking Lander 2 data, the REMS daily average pressures show no evidence yet for the 1-20 Pa increase expected from the possible loss of CO 2 from the south polar residual cap. Key Points REMS pressure sensor is operating nominally New phenomena have been discovered Familiar phenomena have been detected ©2014. American Geophysical Union. All Rights Reserved.
  •  
8.
  • Haberle, R. M., et al. (författare)
  • Secular Climate Change on Mars : An Update Using MSL Pressure Data
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (19 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2 Mars years ago were found to be consistent with these loss rates. Here we compare surface pressure data from the MSL mission with that from Viking Lander 2 (VL-2) to determine if the trend continues. We use VL-2 because it is at the same elevation as MSL (-4500 m). However, based on the first 100 sols of data there does not appear to be a significant difference between the dynamically adjusted pressures of the two landers. This result implies one of several possibilities: (1) the cap is not losing mass and the difference between the Viking and Phoenix results is due to uncertainties in the measurements; (2) the cap has lost mass between the Viking and Phoenix missions but it has since gone back to the cap or into the regolith; or (3) that our analysis is flawed. The first possibility is real since post-mission analysis of the Phoenix sensor has shown that there is a 3 (±2) Pa offset in the data and there may also be uncertainties in the Viking data. The loss/gain scenario for the cap seems unlikely since scarps continue retreating, and regolith uptake implies something unique about the past several Mars years. That our analysis is flawed is certainly possible owing to the very different environments of the Viking and MSL landers. MSL is at the bottom of a deep crater in the southern tropics (~5°S), whereas VL-2 is at a high latitude (~48°N) in the northern plains. And in spite of the fact that the two landers are at nearly identical elevations, they are in very different thermal environments (e.g., MSL is warm when VL-2 is cold), which can have a significant affect on pressures. For these reasons, our confidence in the comparison will increase as more MSL data become available. We will report the results up through sol 360 at the meeting.
  •  
9.
  • Guzewich, Scott D., et al. (författare)
  • Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm
  • 2019
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:1, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planet‐encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover's meteorological sensors, cameras, and spectrometers. Mast Camera 880‐nm optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97% reduction in incident total ultraviolet solar radiation at the surface, 30K reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 Pa. No active dust‐lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission's storm observations and initial results.
  •  
10.
  • Hamilton, Victoria E., et al. (författare)
  • Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 119:4, s. 745-770
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe preliminary results from the first 100 sols of ground temperature measurements along the Mars Science Laboratory's traverse from Bradbury Landing to Rocknest in Gale. The ground temperature data show long-term increases in mean temperature that are consistent with seasonal evolution. Deviations from expected temperature trends within the diurnal cycle are observed and may be attributed to rover and environmental effects. Fits to measured diurnal temperature amplitudes using a thermal model suggest that the observed surfaces have thermal inertias in the range of 265-375?J m-2 K-1 s-1/2, which are within the range of values determined from orbital measurements and are consistent with the inertias predicted from the observed particle sizes on the uppermost surface near the rover. Ground temperatures at Gale Crater appear to warm earlier and cool later than predicted by the model, suggesting that there are multiple unaccounted for physical conditions or processes in our models. Where the Mars Science Laboratory (MSL) descent engines removed a mobile layer of dust and fine sediments from over rockier material, the diurnal temperature profile is closer to that expected for a homogeneous surface, suggesting that the mobile materials on the uppermost surface may be partially responsible for the mismatch between observed temperatures and those predicted for materials having a single thermal inertia. Models of local stratigraphy also implicate thermophysical heterogeneity at the uppermost surface as a potential contributor to the observed diurnal temperature cycle. Key Points Diurnal ground temperatures vary with location Diurnal temperature curves are not well matched by a homogeneous thermal model GTS data are consistent with a varied stratigraphy and thermophysical properties.
  •  
11.
  • Renno, N.O., et al. (författare)
  • Ground-atmosphere interactions at Gale
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • We analyze variations in environmental parameters and regolith properties along Curiosity’s track to determine the possible causes of an abrupt change in the thermal properties of the ground and the atmosphere observed around Sol 120, as the rover transitioned from an area of sandy soil (Rocknest) to an area of fractured bedrock terrain (Yellowknife). Curiosity is instrumented with the Rover Environmental Monitoring Station (REMS) and the Dynamic Albedo of Neutrons (DAN) sensors to measure the air temperature, the ground temperature, and the hydrogen content of the shallow subsurface along Curiosity’s track. Analysis of the REMS data is used to estimate the regolith’s heat budget. This analysis suggests that the abrupt decrease in the ground and atmosphere temperature and the difference between ground and air temperatures observed around Sol 120 is likely caused by an increase in the soil thermal inertia. The changes in thermal inertia have been known for some time so confirming this by the REMS package provides ground truthing. A new unexpected finding is that the regolith water content, as indicated by DAN’s detection of hydrogen content, is higher in the Yellowknife soil. Another interesting finding at this site are the holes and other signs of recent geological activity in the area of fractured terrain that may reflect large volumetric variations and facilitate gas exchange between the ground and atmosphere. Near-surface volumetric changes in soil and bedrock could reflect changes in the volume of subsurface H2O, or in the partitioning of H2O among its three phases. Volume increases could also result from salt crystal growth in rock pores and soil pores associated with the adsorption of water vapor. Crystallization in pores is a significant weathering process on Earth; it could well be active on Mars. Salts also inhibits the exchange of moisture between the ground and the atmosphere, and cements the soils of arid places such as in the McMurdo Dry Valleys in Antarctica. Indeed, salts might be responsible for the ubiquitous martian duricrust. More importantly, salt crusts have the potential to create pockets of wet regolith in the shallow martian subsurface that could be habitable. A better understanding of ground-atmosphere interactions has the potential to shed new light into aqueous processes in the shallow martian subsurface.
  •  
12.
  • Gõmez-Elvira, Javier, et al. (författare)
  • Curiosity's rover environmental monitoring station : Overview of the first 100 sols
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:7, s. 1680-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • In the first 100 Martian solar days (sols) of the Mars Science Laboratory mission, the Rover Environmental Monitoring Station (REMS) measured the seasonally evolving diurnal cycles of ultraviolet radiation, atmospheric pressure, air temperature, ground temperature, relative humidity, and wind within Gale Crater on Mars. As an introduction to several REMS-based articles in this issue, we provide an overview of the design and performance of the REMS sensors and discuss our approach to mitigating some of the difficulties we encountered following landing, including the loss of one of the two wind sensors. We discuss the REMS data set in the context of other Mars Science Laboratory instruments and observations and describe how an enhanced observing strategy greatly increased the amount of REMS data returned in the first 100 sols, providing complete coverage of the diurnal cycle every 4 to 6 sols. Finally, we provide a brief overview of key science results from the first 100 sols. We found Gale to be very dry, never reaching saturation relative humidities, subject to larger diurnal surface pressure variations than seen by any previous lander on Mars, air temperatures consistent with model predictions and abundant short timescale variability, and surface temperatures responsive to changes in surface properties and suggestive of subsurface layering. Key Points Introduction to the REMS results on MSL mission Overiview of the sensor information Overview of operational constraints
  •  
13.
  • Grotzinger, J.P., et al. (författare)
  • A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
  •  
14.
  • Moores, John E., et al. (författare)
  • Atmospheric movies acquired at the Mars Science Laboratory landing site : Cloud Morphology, Frequency and Significance to the Gale Crater Water Cycle and Phoenix Mission Results
  • 2015
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 55:9, s. 2217-2238
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first 360 sols (LS 150° to 5°), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith Movies and 79 Supra-Horizon Movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6°S) during this season than was observed in Green Valley (68.2°N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 ± 0.009 with a granularity to the features observed which averages 3.8 degrees. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought.
  •  
15.
  • Navarro‐González, Rafael, et al. (författare)
  • Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian : Insights From the Mars Science Laboratory
  • 2019
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:1, s. 94-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitric oxide (NO) was produced more efficiently in 20% H2 in spite of being a reducing agent and not likely to increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2−) and nitrate (NO3−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogen content sharply decreases in younger sediments of the Murray formation suggesting a decline of H2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life.
  •  
16.
  • Grotzinger, John P., et al. (författare)
  • Curiosity's Mission of Exploration at Gale Crater, Mars
  • 2015
  • Ingår i: Elements. - : Mineralogical Society of America. - 1811-5209 .- 1811-5217. ; 11:1, s. 19-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Landed missions to the surface of Mars have long sought to determine the material properties of rocks and soils encountered during the course of surface exploration. Increasingly, emphasis is placed on the study of materials formed or altered in the presence of liquid water. Placed in the context of their geological environment, these materials are then used to help evaluate ancient habitability. The Mars Science Laboratory mission—with its Curiosity rover—seeks to establish the availability of elements that may have fueled microbial metabolism, including carbon, hydrogen, sulfur, nitrogen, phosphorus, and a host of others at the trace element level. These measurements are most valuable when placed in a geological framework of ancient environments as interpreted from mapping, combined with an understanding of the petrogenesis of the igneous rocks and derived sedimentary materials. In turn, the analysis of solid materials and the reconstruction of ancient environments provide the basis to assess past habitability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy