SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vellend M.) "

Sökning: WFRF:(Vellend M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
4.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
5.
  • Prevey, J., et al. (författare)
  • Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:7, s. 2660-2671
  • Tidskriftsartikel (refereegranskat)abstract
    • Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.
  •  
6.
  •  
7.
  • Bowler, D. E., et al. (författare)
  • Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes
  • 2020
  • Ingår i: People and Nature. - : Wiley. - 2575-8314. ; 2:2, s. 380-394
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world. Abstrakt Der Klimawandel und andere anthropogene Faktoren, die die biologische Vielfalt verandern, betreffen nicht alle Teile der Erde in gleicher Weise. Wahrend unsere Kenntnisse zu jedem einzelnen Gefahrdungsfaktor standig wachsen, ist unser Verstandnis zu den raumlichen Beziehungen zwischen den verschiedenen Faktoren und ihr Zusammenwirken noch sehr mangelhaft. Das betrifft z.B. auch die Unterschiede zwischen terrestrischen und marinen Lebensraumen, die sehr unterschiedlichen Bedrohungen ausgesetzt sein konnen, selbst wenn sie eng benachbart sind. In der vorliegenden Studie haben wir globale Datensatze uber Klimawandel, Landnutzung, Ressourcenausbeutung, Umweltverschmutzung, biologische Invasionen und Bevolkerungsdichte zusammengestellt. Mit Hilfe multivariater Statistiken haben wir die raumlichen Beziehungen zwischen diesen Ursachen des globalen Biodiversitatswandels und deren Kombinationen untersucht, um deren Einfluss auf verschiedene Regionen der Welt zu charakterisieren. Insbesondere in den terrestrischen Regionen wirken die genannten Gefahrdungsfaktoren haufig in der gleichen Richtung, vor allem solche, die zum Teil besonders hohe Belastungen darstellen. Regionen mit starker ausgepragtem Klimawandel sind tendenziell solche Gebiete, in denen die Gefahrdung durch andere Faktoren eher geringer ist, wie z.B. in der Tundra und im borealen Nadelwald, die stark vom Klimawandel, aber weniger von hoher Nutzungsintensitat und Verschmutzung betroffen sind. Dagegen treten in den Meeresregionen gegenteilige Muster auf, wo z.B. im Indopazifik ein sehr ausgepragter Klimawandel einer hoher Ressourcenausbeutung durch Fischerei zusammenfallt. Die Regionen der Welt lassen sich in Klassen unterschiedlicher Interaktionen und Intensitaten dieser anthropogenen Gefahrungsfaktoren unterteilen. Diese insgesamt 11 verschiedene Faktorenklassen konnen nun dazu verwendet werden, Auswirkungen auf Biodiversitat zu untersuchen und die Gefahrdungs-Hotspots zu identifizieren. Diese Hotspots sind diejenigen gro ss raumigen Meeres- und Festlandsregionen, in denen prioritar Naturschutzma ss nahmen angewendet werden mussen, um den Auswirkungen des anthropogenen Biodiversitatswandels entgegenzutreten. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
8.
  • De Frenne, Pieter, et al. (författare)
  • Microclimate moderates plant responses to macroclimate warming
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:46, s. 18561-18565
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., thermophilization of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that climatic lags may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.
  •  
9.
  • Vellend, Mark, et al. (författare)
  • Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use
  • 2007
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 95, s. 565-573
  • Tidskriftsartikel (refereegranskat)abstract
    • 1Disturbance may cause community composition across sites to become more or less homogenous, depending on the importance of different processes involved in community assembly. In north-eastern North America and Europe local (alpha) diversity of forest plants is lower in forests growing on former agricultural fields (recent forests) than in older (ancient) forests, but little is known about the influence of land-use history on the degree of compositional differentiation among sites (beta diversity).2Here we analyse data from 1446 sites in ancient and recent forests across 11 different landscapes in north-eastern North America and Europe to demonstrate decreases in beta diversity and in the strength of species–environment relationships in recent vs. ancient forests.3The magnitude of environmental variability among sites did not differ between the two forest types. This suggests the difference in beta diversity between ancient and recent forests was not due to different degrees of environmental heterogeneity, but rather to dispersal filters that constrain the pool of species initially colonizing recent forests.4The observed effects of community homogenization and weakened relationships between species distributions and environmental gradients appear to persist for decades or longer. The legacy of human land-use history in spatial patterns of biodiversity may endure, both within individual sites and across sites, for decades if not centuries.
  •  
10.
  • Verheyen, Kris, et al. (författare)
  • 201 Combining Biodiversity Resurveys across Regions to Advance Global Change Research
  • 2017
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 67:1, s. 73-83
  • Tidskriftsartikel (refereegranskat)abstract
    • More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy