SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vennström Björn) "

Sökning: WFRF:(Vennström Björn)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinnikov, Alexander, et al. (författare)
  • Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1.
  • 2002
  • Ingår i: The EMBO journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 21:19, s. 5079-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Most patients with the syndrome resistance to thyroid hormone (RTH) express a mutant thyroid hormone receptor beta (TRbeta) with transdominant negative transcriptional effects. Since no patient with a mutant TRalpha has been identified, we introduced a point mutation into the mouse thyroid hormone receptor (TRalpha1) locus originally found in the TRbeta gene, that reduces ligand binding 10-fold. Heterozygous 2- to 3-week- old mice exhibit a severe retardation of post-natal development and growth, but only a minor reduction in serum thyroxine levels. Homozygous mice died before 3 weeks of age. Adult heterozygotes overcome most of these defects except for cardiac function abnormalities, suggesting that other factors compensate for the receptor defect. However, the additional deletion of the TRbeta gene in this mouse strain caused a 10-fold increase in serum thyroxine, restored hormonal regulation of target genes for TRs, and rescued the growth retardation. The data demonstrate a novel array of effects mediated by a dominant negative TRalpha1, and may provide important clues for identification of a potentially unrecognized human disorder and its treatment.
  •  
2.
  • Göthe, Sten, et al. (författare)
  • Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation.
  • 1999
  • Ingår i: Genes & development. - : Cold Spring Harbor Laboratory. - 0890-9369. ; 13:10, s. 1329-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone (T3) has widespread functions in development and homeostasis, although the receptor pathways by which this diversity arises are unclear. Deletion of the T3 receptors TRalpha1 or TRbeta individually reveals only a small proportion of the phenotypes that arise in hypothyroidism, implying that additional pathways must exist. Here, we demonstrate that mice lacking both TRalpha1 and TRbeta (TRalpha1(-/-)beta-/-) display a novel array of phenotypes not found in single receptor-deficient mice, including an extremely hyperactive pituitary-thyroid axis, poor female fertility and retarded growth and bone maturation. These results establish that major T3 actions are mediated by common pathways in which TRalpha1 and TRbeta cooperate with or substitute for each other. Thus, varying the balance of use of TRalpha1 and TRbeta individually or in combination facilitates control of an extended spectrum of T3 actions. There was no evidence for any previously unidentified T3 receptors in TRalpha1(-/-)beta-/- mouse tissues. Compared to the debilitating symptoms of severe hypothyroidism, the milder overall phenotype of TRalpha1(-/-)beta-/- mice, lacking all known T3 receptors, indicates divergent consequences for hormone versus receptor deficiency. These distinctions suggest that T3-independent actions of T3 receptors, demonstrated previously in vitro, may be a significant function in vivo.
  •  
3.
  • Kindblom, Jenny, 1971, et al. (författare)
  • GH substitution reverses the growth phenotype but not the defective ossification in thyroid hormone receptor alpha 1-/-beta-/- mice.
  • 2001
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 171:1, s. 15-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone receptor alpha 1, beta 1 and beta 2-deficient mice (TR alpha 1-/-beta-/- mice) demonstrate growth retardation and defective ossification in the epiphyses associated with an inhibition of the GH/IGF-I axis. There are differences between TR alpha 1-/-beta-/- mice (receptor deficient) and the hypothyroid animal model (ligand deficient). Such differences include possible repressive actions exerted by unliganded receptors in the ligand-deficient (hypothyroid) model but not in the receptor-deficient model. In the present study we have investigated whether or not GH substitution rescues the skeletal phenotype of TR alpha 1-/-beta-/- mice. TR alpha 1-/-beta-/- and wild-type (WT) mice were treated with GH from day 18 until 10 weeks of age. GH substitution of mutant mice resulted in a significant and sustained stimulatory effect on the body weight that was not seen in WT mice. GH-treated mutant mice but not GH-treated WT mice demonstrated increased length and periosteal circumference of the femur. However, GH substitution did not reverse the defective ossification seen in TR alpha 1-/-beta-/- mice. TR alpha 1-/-beta-/- mice displayed increased width of the proximal tibial growth plate, which was caused by increased width of the proliferative but not the hypertrophic layer. GH substitution did not restore the disturbed morphology of the growth plate in TR alpha 1-/-beta-/- mice. In summary, GH substitution reverses the growth phenotype but not the defective ossification in TR alpha 1-/-beta-/- mice. Our data suggest that TRs are of importance both for the regulation of the GH/IGF-I axis and for direct effects on cartilage.
  •  
4.
  • Kindblom, Jenny, 1971, et al. (författare)
  • Increased adipogenesis in bone marrow but decreased bone mineral density in mice devoid of thyroid hormone receptors.
  • 2005
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282. ; 36:4, s. 607-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice deficient for all known thyroid hormone receptors, TRalpha1-/-beta-/- mice, display a clear skeletal phenotype characterized by growth retardation, delayed maturation of long bones and decreased trabecular and total bone mineral density (BMD; -14.6 +/- 2.8%, -14.4 +/- 1.5%). The aim of the present study was to investigate the molecular mechanisms behind the skeletal phenotype in TRalpha1-/-beta-/- mice. Global gene expression analysis was performed on total vertebrae from wild-type (WT) and TRalpha1-/-beta-/- mice using DNA microarray and the results were verified by real-time PCR. The mRNA levels of six genes (AdipoQ, Adipsin, Fat-Specific Protein 27 (FSP 27), lipoprotein lipase (LPL), retinol-binding protein (RBP) and phosphoenolpyruvate carboxykinase (PEPCK)) expressed by mature adipocytes were increased in TRalpha1-/-beta-/- compared with WT mice. An increased amount of fat (225% over WT) due to an increased number but unchanged mean size of adipocytes in the bone marrow of TRalpha1-/-beta-/- mice was revealed. Interestingly, the mRNA levels of the key regulator of osteoclastogenesis, receptor activator of NF-varkappab ligand (RANKL), were dramatically decreased in TRalpha1-/-beta-/- mice. In conclusion, TRalpha1-/-beta-/- mice demonstrated increased expression of adipocyte specific genes and an increased amount of bone marrow fat. Thus, these mice have increased adipogenesis in bone marrow associated with decreased trabecular bone mineral density (BMD). One may speculate that these effects either could be caused by an imbalance in the differentiation of the osteoblast and the adipocyte lineages at the expense of osteoblastogenesis, or by independent effects on the regulation of both osteoblastogenesis and adipogenesis.
  •  
5.
  • Niklasson, Mia, et al. (författare)
  • Enlarged lateral ventricles and aberrant behavior in mice overexpressing PDGF-B in embryonic neural stem cells
  • 2010
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 316:17, s. 2779-2789
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet-derived growth factor (PDGF) is important in central nervous system (CNS) development, and aberrant expression of PDGF and its receptors has been linked to developmental defects and brain tumorigenesis. We previously found that neural stem and progenitor cells in culture produce PDGF and respond to it by autocrine and/or paracrine signaling. We therefore aimed to examine CNS development after PDGF overexpression in neural stem cells in vivo. Transgenic mice were generated with PDGF-B under control of a minimal nestin enhancer element, which is specific for embryonic expression and will not drive adult expression in mice. The resulting mouse showed increased apoptosis in the developing striatum, which suggests a disturbed regulation of progenitor cells. Later in neurodevelopment, in early postnatal life, mice displayed enlarged lateral ventricles. This enlargement remained into adulthood and it was more pronounced in male mice than in transgenic female mice. Nevertheless, there was an overall normal composition of cell types and numbers in the brain and the transgenic mice were viable and fertile. Adult transgenic males, however, showed behavioral aberrations and locomotor dysfunction. Thus, a tightly regulated expression of PDGF during embryogenesis is required for normal brain development and function in mice.
  •  
6.
  • Saltó, C, et al. (författare)
  • Ablation of TRalpha2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice.
  • 2001
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 0888-8809. ; 15:12, s. 2115-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone governs a diverse repertoire of physiological functions through receptors encoded in the receptor genes alpha and beta, which each generate variant proteins. In mammals, the alpha gene generates, in addition to the normal receptor TRalpha1, a non-hormone-binding variant TRalpha2 whose exact function is unclear. Here, we present the phenotype associated with the targeted ablation of TRalpha2 expression. Selective ablation of TRalpha2 resulted in an inevitable, concomitant overexpression of TRalpha1. Both TRalpha2 +/- and -/- mice show a complex phenotype with low levels of free T3 and free T4, and have inappropriately normal levels of TSH. The thyroid glands exhibit mild morphological signs of dysfunction and respond poorly to TSH, suggesting that the genetic changes affect the ability of the gland to release thyroid hormones. However, the phenotype of the mutant mice also has features of hyperthyroidism, including decreased body weight, elevated heart rate, and a raised body temperature. Furthermore, TRalpha2-/- and TRalpha2+/- mice are obese and exhibit skeletal alterations, associated with a late-onset growth retardation. The results thus suggest that the overexpression of TRalpha1 and the concomitant decrease in TRalpha2 expression lead to a mixed hyper- and hypothyroid phenotype, dependent on the tissue studied. The phenotypes suggest that the balance of TRalpha1:TRalpha2 expressed from the TRalpha gene provides an additional level of tuning the control of growth and homeostasis in mammalian species.
  •  
7.
  •  
8.
  • Wallis, Karin, et al. (författare)
  • Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneuros caused by a unlignded thyroid hormopne receptor alpha-1
  • 2008
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 28:8, s. 1904-1915
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone (TH) deficiency during development causes severe and permanent neuronal damage, but the primary insult at the tissue level has remained unsolved. We have defined locomotor deficiencies in mice caused by a mutant thyroid hormone receptor alpha 1 (TR alpha 1) with potent aporeceptor activity attributable to reduced affinity to TH. This allowed identification of distinct functions that required either maternal supply of TH during early embryonic development or sufficient innate levels of hormone during late fetal development. In both instances, continued exposure to high levels of TH after birth and throughout life was needed. The hormonal dependencies correlated with severely delayed appearance of parvalbumin-immunoreactive GABAergic interneurons and increased numbers of calretinin-immunoreactive cells in the neocortex. This resulted in reduced numbers of fast spiking interneurons and defects in cortical network activity. The identification of locomotor deficiencies caused by insufficient supply of TH during fetal/perinatal development and their correlation with subtype-specific interneurons suggest a previously unknown basis for the neuronal consequences of endemic cretinism and untreated congenital hypothyroidism, and specifies TR alpha 1 as the receptor isoform mediating these effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy