SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verbeek Joost) "

Sökning: WFRF:(Verbeek Joost)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mansor, Syahir, et al. (författare)
  • Parametric Methods for Dynamic (11)C-Phenytoin PET Studies.
  • 2017
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 58:3, s. 479-483
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the performance of various methods for generating quantitative parametric images of dynamic (11)C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic (11)C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (VT) and influx rate (K1) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K1 and VT values. Results: Biases in VT observed with all parametric methods were less than 5%. For K1, spectral analysis showed a negative bias of 16%. The mean TRT variabilities of VT and K1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar VT and K1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric VT and K1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration.
  •  
3.
  • Syvänen, Stina, et al. (författare)
  • [C-11]quinidine and [C-11]laniquidar PET imaging in a chronic rodent epilepsy model : Impact of epilepsy and drug-responsiveness
  • 2013
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:6, s. 764-775
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: To analyse the impact of both epilepsy and pharmacological modulation of P-glycoprotein on brain uptake and kinetics of positron emission tomography (PET) radiotracers [C-11]quinidine and [C-11]laniquidar.Methods: Metabolism and brain kinetics of both [C-11]quinidine and [C-11]laniquidar were assessed in naive rats, electrode-implanted control rats, and rats with spontaneous recurrent seizures. The latter group was further classified according to their response to the antiepileptic drug phenobarbital into "responders" and "non-responders". Additional experiments were performed following pre-treatment with the P-glycoprotein modulator tariquidar.Results: [C-11]quinidine was metabolized rapidly, whereas [C-11]laniquidar was more stable. Brain concentrations of both radiotracers remained at relatively low levels at baseline conditions. Tariquidar pre-treatment resulted in significant increases of [C-11]quinidine and [C-11]laniquidar brain concentrations. In the epileptic subgroup "non-responders", brain uptake of [C-11]quinidine in selected brain regions reached higher levels than in electrode-implanted control rats. However, the relative response to tariquidar did not differ between groups with full blockade of P-glycoprotein by 15 mg/kg of tariquidar. For [C-11]laniquidar differences between epileptic and control animals were only evident at baseline conditions but not after tariquidar pretreatment.Conclusions: We confirmed that both [C-11]quinidine and [C-11]laniquidar are P-glycoprotein substrates. At full P-gp blockade, tariquidar pre-treatment only demonstrated slight differences for [C-11]quinidine between drug-resistant and drug-sensitive animals.
  •  
4.
  • Verbeek, Joost, et al. (författare)
  • [11C]phenytoin revisited : synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats.
  • 2012
  • Ingår i: EJNMMI Research. - 2191-219X. ; 2:1, s. 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: At present, several positron emission tomography (PET) tracers are in use for imaging Pglycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[11C]verapamil display low brain concentrations with a distribution volume of around 1. [11C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [11C]phenytoin and to characterize its properties as a P-gp tracer. METHODS: [11C]CO was used to synthesize [11C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [11C]phenytoin were studied in rats. Effects of P-gp function on [11C]phenytoin uptake were assessed using predosing with tariquidar. RESULTS: [11C]phenytoin was synthesized via [11C]CO in an overall decay-corrected yield of 22 +/- 4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [11C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [11C]phenytoin. CONCLUSIONS: Using [11C]CO, the radiosynthesis of [11C]phenytoin could be improved. [11C]phenytoin appeared to be a rather weak P-gp substrate.
  •  
5.
  • Verbeek, Joost, et al. (författare)
  • Synthesis and preclinical evaluation of [11C]D617, a metabolite of (R)-[11C]verapamil.
  • 2012
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 39:4, s. 530-9
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: (R)-[(11)C]verapamil is widely used as a positron emission tomography (PET) tracer to evaluate P-glycoprotein (P-gp) functionality at the blood-brain barrier in man. A disadvantage of (R)-[(11)C]verapamil is the fact that its main metabolite, [(11)C]D617, also enters the brain. For quantitative analysis of (R)-[(11)C]verapamil data, it has been assumed that the cerebral kinetics of (R)-[(11)C]verapamil and [(11)C]D617 are the same. The aim of the present study was to investigate whether the cerebral kinetics of (R)-[(11)C]verapamil and [(11)C]D617 are indeed similar and, if so, whether [(11)C]D617 itself could serve as an alternative PET tracer for P-gp.METHODS: [(11)C]D617 was synthesized and its ex vivo biodistribution was investigated in male rats at four time points following intravenous administration of [(11)C]D617 (50 MBq) without (n=4) or with (n=4) pretreatment with the P-gp inhibitor tariquidar (15 mg·kg(-1), intraperitoneally). Brain distribution was further assessed using consecutive PET scans (n=8) before and after pretreatment with tariquidar (15 mg·kg(-1), intravenously), as well as metabolite analysis (n=4).RESULTS: The precursor for the radiosynthesis of [(11)C]D617, 5-amino-2-(3,4-dimethoxy-phenyl)-2-isopropyl-pentanitrile (desmethyl D617), was synthesized in 41% overall yield. [(11)C]D617 was synthesized in 58%-77% decay-corrected yield with a radiochemical purity of ≥99%. The homogeneously distributed cerebral volume of distribution (V(T)) of [(11)C]D617 was 1.1, and this increased 2.4-fold after tariquidar pretreatment.CONCLUSION: V(T) of [(11)C]D617 was comparable to that of (R)-[(11)C]verapamil, but its increase after tariquidar pretreatment was substantially lower. Hence, (R)-[(11)C]verapamil and [(11)C]D617 do not show similar brain kinetics after inhibition of P-gp with tariquidar.
  •  
6.
  • Verbeek, Joost, et al. (författare)
  • Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18F]4FIMPTC) as a novel PET tracer of P-glycoprotein expression
  • 2018
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several P-glycoprotein (P-gp) substrate tracers are available to assess P-gp function in vivo, but attempts to develop a tracer for measuring expression levels of P-gp have not been successful. Recently, (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide was described as a potential selective P-gp inhibitor that is not transported by P-gp. Therefore, the purpose of this study was to radiolabel two of its analogues and to assess their potential for imaging P-gp expression using PET.Results: [18F]2-(4-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]5) and [18F]2-(6-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]6) were synthesized and both their biodistribution and metabolism were evaluated in rats. In addition, PET scans were acquired in rats before and after tariquidar (P-gp inhibitor) administration as well as in P-gp knockout (KO) mice.Both [18F]5 and [18F]6 were synthesized in 2-3% overall yield, and showed high brain uptake in ex vivo biodistribution studies. [18F]6 appeared to be metabolically unstable in vivo, while [18F]5 showed moderate stability with limited uptake of radiolabelled metabolites in the brain. PET studies showed that transport of [18F]5 across the blood-brain barrier was not altered by pre-treatment with the P-gp inhibitor tariquidar, and uptake was significantly lower in P-gp KO than in wild-type animals and indeed transported across the BBB or bound to P-gp in endothelial cells.Conclusion: In conclusion, [18F]5 and [18F]6 were successfully and reproducibly synthesized, albeit with low radiochemical yields. [18F]5 appears to be a radiotracer that binds to P-gp, as showed in P-gp knock-out animals, but is not a substrate for P-gp.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy