SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verhaegen J) "

Sökning: WFRF:(Verhaegen J)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ament, A, et al. (författare)
  • Cost-Effectiveness of Pneumococcal Vaccination of Older People: A Study in 5 Western European Countries
  • 2000
  • Ingår i: Clinical infectious diseases. - : The University of Chicago Press. - 1537-6591 .- 1058-4838. ; 31:2, s. 444-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Pneumococcal vaccination of older persons is thought to be cost-effective in preventing pneumococcal pneumonia, but evidence of clinical protection is uncertain. Because there is better evidence of vaccination effectiveness against invasive pneumococcal disease, we determined the cost-effectiveness of pneumococcal vaccination of persons aged ≥65 years in preventing hospital admission for both invasive pneumococcal disease and pneumococcal pneumonia in 5 western European countries. In the base case analyses, the cost-effectiveness ratios for preventing invasive disease varied from ∼11,000 to ∼33,000 European currency units (ecu) per quality-adjusted life year (QALY). Assuming a common incidence (50 cases per 100,000) and mortality rate (20%-40%) for invasive disease, the cost-effectiveness ratios were <12,000 ecu per QALY in all 5 countries. For preventing pneumococcal pneumonia, vaccinating all elderly persons would be highly cost-effective to cost saving. Public health authorities should consider policies for encouraging pneumococcal vaccination for all persons aged ≥65 years.
  •  
2.
  • Luspay, T., et al. (författare)
  • Linear Parameter Varying Identification of Freeway Traffic Models
  • 2011
  • Ingår i: IEEE Transactions on Control Systems Technology. - 1063-6536 .- 1558-0865. ; 19:1, s. 31-45
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper deals with linear parameter varying (LPV) modeling and identification of a generic, second-order freeway traffic flow model. A non-conventional technique is proposed to transform the nonlinear freeway traffic flow model into a parameter-dependent form. The resulting exact LPV model is equivalent to the original nonlinear dynamics. Simplification of the nonlinear model gives rise to the introduction of an approximate LPV description. The application of parameter varying identification approaches are made possible by the transformation. Closed-loop predictor-based subspace identification for LPV systems (PBSID LPV) is applied to estimate the affine parameter matrices of the LPV freeway models developed. If the model structure of the original plant is assumed to be known, this paper shows a solution how to estimate LPV model parameters based on the identified model. Parameter-dependent models are identified and validated using real detector measurement data in order to emphasize the applicability of the kernel PBSID LPV methodology. Comparison with traditional nonlinear parametric identification, generally used in traffic identification, is also provided.
  •  
3.
  • Ma, Yunzhi, et al. (författare)
  • A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy
  • 2017
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405 .- 2473-4209. ; 44:11, s. 5961-5976
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.
  •  
4.
  • Ballester, Facundo, et al. (författare)
  • A generic high-dose rate Ir-192 brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism
  • 2015
  • Ingår i: Medical physics (Lancaster). - : American Association of Physicists in Medicine: Medical Physics. - 0094-2405. ; 42:6, s. 3048-3062
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) Ir-192 source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR Ir-192 source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic Ir-192 source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra (R) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision AcuRos (TM)]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and pENELopE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR Ir-192 source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. Results: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ACE algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 +/- 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ACE at clinically relevant distances. Conclusions: A hypothetical, generic HDR Ir-192 source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs. (C) 2015 American Association of Physicists in Medicine.
  •  
5.
  • Beaulieu, Luc, et al. (författare)
  • AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy
  • 2023
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405. ; 50:8, s. E946-E960
  • Tidskriftsartikel (refereegranskat)abstract
    • The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.
  •  
6.
  • Beaulieu, Luc, et al. (författare)
  • Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism : Current status and recommendations for clinical implementation
  • 2012
  • Ingår i: Medical physics (Lancaster). - : American Association of Physicists in Medicine. - 0094-2405. ; 39:10, s. 6208-6236
  • Tidskriftsartikel (refereegranskat)abstract
    • The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are not addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU∕ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.
  •  
7.
  • Dong, J, et al. (författare)
  • Fault detection for LPV systems using model parameters that can be estimated via linear least squares
  • 2014
  • Ingår i: International Journal of Robust and Nonlinear Control. - : Wiley. - 1099-1239 .- 1049-8923. ; 24:14, s. 1989-1999
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a fault detection approach for discrete-time affine linear parameter varying systems with additive faults. A finite horizon input-output linear parameter varying model is used to obtain a linear in the model parameter regression residual form. The bias in the residual term vanishes because of quadratic stability of an underlying observer. The new methodology avoids projecting the residual onto a parity space, which in real time requires at least quadratic computational complexity. When neglecting the bias, the fault detection is carried out by an χ2 hypothesis test. Finally, the algorithm uses model parameters that can be identified prior to the on-line fault detection with linear least squares. A realtime experiment is carried out to demonstrate the viability of the proposed method.
  •  
8.
  •  
9.
  • Haverkamp, B. R. J., et al. (författare)
  • Continuous-Time Subspace Model Identification Method Using Laguerre Filtering
  • 1997
  • Ingår i: IFAC Proceedings Volumes. ; 30:11, s. 1093-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a time domain subspace model identification method, for the identification of continuous-time MIMO state-space models. The measured signals are assumed to be contaminated with both process and measurement noise. The method uses a bilinear transformation on the data, to identify the system in an alternative domain. Afterwards the system is transformed back. An example of the method is presented.
  •  
10.
  •  
11.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy