SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verheyen F) "

Sökning: WFRF:(Verheyen F)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burrascano, S., et al. (författare)
  • Where are we now with European forest multi-taxon biodiversity and where can we head to?
  • 2023
  • Ingår i: Biological Conservation. - 0006-3207. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were repre-sented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other develop-mental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM stra-tegies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM in-dicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Abila, R., et al. (författare)
  • Oil extraction imperils Africa’s Great Lakes
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6312, s. 561-562
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • As the world's demands for hydrocarbons increase (1), remote areas previously made inaccessible by technological limitations are now being prospected for oil and gas deposits. Virtually unnoticed by the public, such activities are ongoing in the East African Great Lakes region, threatening these ecosystems famed for their hyper-diverse biota, including the unique adaptive radiations of cichlid fishes (2). Countries in the region see exploitation of hydrocarbon reserves as a vital economic opportunity. In the Lake Albert region of Uganda, for example, the government foresees a $3.6 billion oil profit per year starting in 2018—a sum almost as high as the country's current annual budget (3). However, oil extraction in the East African Great Lakes region poses grave risks to the environment and local communities.
  •  
4.
  • Ratcliffe, S., et al. (författare)
  • Biodiversity and ecosystem functioning relations in European forests depend on environmental context
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1414-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
  •  
5.
  • van der Plas, F., et al. (författare)
  • Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality
  • 2018
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 21:1, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
  •  
6.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
7.
  •  
8.
  •  
9.
  • Kambach, S., et al. (författare)
  • How do trees respond to species mixing in experimental compared to observational studies?
  • 2019
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 9:19, s. 11254-11265
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships.
  •  
10.
  • Makelele, I. A., et al. (författare)
  • Conservative N cycling despite high atmospheric deposition in early successional African tropical lowland forests
  • 2022
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 477, s. 743-758
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Across the tropics, the share of secondary versus primary forests is strongly increasing. The high rate of biomass accumulation during this secondary succession relies on the availability of essential nutrients, such as nitrogen (N). Nitrogen primarily limits many young secondary forests in the tropics. However, recent studies have shown that forests of the Congo basin are subject to high inputs of atmospheric N deposition, potentially alleviating this N limitation in early succession. Methods To address this hypothesis, we assessed the N status along a successional gradient of secondary forests in the Congo basin. In a set-up of 18 plots implemented along six successional stages, we quantified year-round N deposition, N leaching, N2O emission and the N flux of litterfall and fine root assimilation. Additionally, we determined the N content and C:N stoichiometry for canopy leaves, fine roots, and litter, as well as delta N-15 of canopy leaves. Results We confirmed that these forests receive high amounts of atmospheric N deposition, with an increasing deposition as forest succession proceeds. Additionally, we noted lower C:N ratios, and higher N leaching losses, N2O emission, and foliar delta N-15 in older secondary forest (60 years). In contrast, higher foliar, litter and root C:N ratios, and lower foliar delta N-15, N leaching, and N2O emission in young (< 20 years) secondary forest were observed. Conclusions Altogether, we show that despite high N deposition, this early forest succession still shows conservative N cycling characteristics, which are likely indicating N limitation early on in secondary forest succession. As secondary succession advances, the N cycle gradually becomes more open.
  •  
11.
  •  
12.
  • Staude, I. R., et al. (författare)
  • Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4, s. 802-808
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of biodiversity at the global scale has been difficult to reconcile with observations of no net loss at local scales. Vegetation surveys across European temperate forests show that this may be explained by the replacement of small-ranged species with large-ranged ones, driven by nitrogen deposition. Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.
  •  
13.
  •  
14.
  •  
15.
  • Caron, M. M., et al. (författare)
  • Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change
  • 2015
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 342, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change.
  •  
16.
  • Caron, M. M., et al. (författare)
  • Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species
  • 2015
  • Ingår i: Flora. - : Elsevier BV. - 0367-2530 .- 1618-0585. ; 214, s. 24-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate projections indicate that temperatures will increase by up to 4.5 degrees C in Europe by the end of this century, and that more extreme rainfall events and longer intervening dry periods will take place. Climate change will likely affect all phases of the life cycle of plants, but plant reproduction has been suggested to be especially sensitive. Here, using a combination of approaches (soil heaters and different provenances along a latitudinal gradient), we analyzed the regeneration from seeds of Acer platanoides and A. pseudoplatanus, two tree species considered, from a management point of view, of secondary relevance. We studied germination, seedling survival and growth in a full-factorial experiment including warming and changes in watering frequency. Both species responded to warming, watering frequency and seed provenance, with stronger (negative) effects of warming and provenance than of watering frequency. In general, the central provenances performed better than the northernmost and southern-most provenances. We also detected interactive effects between warming, watering frequency and/or seed provenance. Based on these results, both species are expected to show dissimilar responses to the changes in the studied climatic factors, but also the impacts of climate change on the different phases of plant regeneration may differ in direction and magnitude. In general increases in the precipitation, frequency will stimulate germination while warming will reduce survival and growth. Moreover, the frequent divergent responses of seedlings along the latitudinal gradient suggest that climate change will likely have heterogeneous impacts across Europe, with stronger impacts in the northern and southern parts of the species' distribution ranges.
  •  
17.
  • Caron, M. M., et al. (författare)
  • Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides
  • 2015
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 17:1, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change.
  •  
18.
  • Caron, M. M., et al. (författare)
  • Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus
  • 2014
  • Ingår i: Plant Ecology. - : Springer Science and Business Media LLC. - 1385-0237 .- 1573-5052. ; 215:8, s. 911-925
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.
  •  
19.
  •  
20.
  •  
21.
  • Moe, S. Jannicke, et al. (författare)
  • Integrating climate model projections into environmental risk assessment : A probabilistic modeling approach
  • 2024
  • Ingår i: Integrated Environmental Assessment and Management. - 1551-3777 .- 1551-3793.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;00:1-17. (c) 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). A SETAC workshop was organized in 2022 to address the integration of future projections from global climate models (GCMs) into environmental risk assessment models.The modeling approach presented is based on deriving on robust climate information with relevance for the assessment: future climate projections from ensembles of GCMs, regionally downscaled, and summarized by statistical properties.Three case studies in Norway, Australia, and the United States were used to show examples of quantification of climate change impacts on traditional risk assessment components such as chemical exposure and hazard, as well as on the vulnerability of assessment endpoints to other stressors.The case studies also demonstrated that probabilistic modeling methods such as Bayesian networks can be useful for integrating all quantified climate change impacts on risk components, together with estimated uncertainty, into a probabilistic risk characterization.
  •  
22.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy