SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vicca Sara) "

Sökning: WFRF:(Vicca Sara)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fang, Chao, et al. (författare)
  • Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation
  • 2023
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 240:2, s. 565-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied.Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland.Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root–shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area.These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
  •  
2.
  • Verbrigghe, Niel, et al. (författare)
  • Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
  • 2022
  • Ingår i: Biogeosciences. - : Copernicus. - 1726-4170 .- 1726-4189. ; 19:14, s. 3381-3393
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils . Using natural geothermal soil warming gradients of up to +6.4 °C in subarctic grasslands , we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (-2.8tha-1 °C-1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (>50 years) warming revealed that all SOC stock reduction occurred within the first 5 years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon-climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions and that SOC stock reduction was only visible in topsoil (0-10cm). SOC stocks in subsoil (10-30cm), where plant roots were absent, showed apparent conservation after >50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies.
  •  
3.
  • Walker, Tom W.N., et al. (författare)
  • A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem
  • 2020
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4:1, s. 101-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5–8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter. However, the warmed state was preceded by an overreaction to warming, which was related to organism physiology and was evident after 5–8 years. Ignoring this overreaction yielded errors of >100% for 83 variables when predicting their responses to a realistic warming scenario of 1 °C over 50 years, although some, including soil carbon content, remained stable after 5–8 years. This study challenges long-term ecosystem predictions made from short-term observations, and provides a framework for characterization of ecosystem responses to sustained climate change.
  •  
4.
  • Calogiuri, Tullia, et al. (författare)
  • Design and Construction of an Experimental Setup to Enhance Mineral Weathering through the Activity of Soil Organisms
  • 2023
  • Ingår i: Journal of Visualized Experiments. - : Journal of Visualized Experiments. - 1940-087X. ; :201
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
  •  
5.
  • Camino-Serrano, Marta, et al. (författare)
  • ORCHIDEE-SOM : Modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:3, s. 937-957
  • Tidskriftsartikel (refereegranskat)abstract
    • Current Land Surface Models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. These common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to two meters. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on- and desorption from soil minerals, diffusion of SOC and DOC and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth- dependent parameterization of the new input model parameters, such as the decomposition times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.
  •  
6.
  • Corbett, Thomas, et al. (författare)
  • Organic carbon source controlled microbial olivine dissolution in small-scale flow-through bioreactors, for CO2 removal
  • 2024
  • Ingår i: NPJ MATERIALS DEGRADATION. - : Nature Publishing Group. - 2397-2106. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of carbon dioxide removal methods, coupled with decreased CO2 emissions, is fundamental to achieving the targets outlined in the Paris Agreement limiting global warming to 1.5 degrees C. Here we are investigating the importance of the organic carbon feedstock to support silicate mineral weathering in small-scale flow through bioreactors and subsequent CO2 sequestration. Here, we combine two bacteria and two fungi, widely reported for their weathering potential, in simple flow through bioreactors (columns) consisting of forsterite and widely available, cheap organic carbon sources (wheat straw, bio-waste digestate of pig manure and biowaste, and manure compost), over six weeks. Compared to their corresponding abiotic controls, the inoculated straw and digestate columns release more total alkalinity (similar to 2 times more) and produce greater dissolved and solid inorganic carbon (29% for straw and 13% for digestate), suggesting an increase in CO2 sequestration because of bio-enhanced silicate weathering. Microbial biomass is higher in the straw columns compared to the digestate and manure compost columns, with a phospholipid fatty acid derived total microbial biomass 10 x greater than the other biotic columns. Scanning Electron Microscopy imaging shows the most extensive colonisation and biofilm formation on the mineral surfaces in the straw columns. The biotic straw and digestate columns sequester 50 and 14 mg C more than their abiotic controls respectively, while there is no difference in the manure columns. The selection of organic carbon sources to support microbial communities in the flow through bioreactors controlls the silicate weathering rates and CO2 sequestration.
  •  
7.
  • Frank, Dorothe A., et al. (författare)
  • Effects of climate extremes on the terrestrial carbon cycle : concepts, processes and potential future impacts
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:8, s. 2861-2880
  • Forskningsöversikt (refereegranskat)abstract
    • Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.
  •  
8.
  • Hagedorn, Gregor, et al. (författare)
  • Concerns of young protesters are justified
  • 2019
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 364:6436, s. 139-140
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
9.
  •  
10.
  • Reichstein, Markus, et al. (författare)
  • Climate extremes and the carbon cycle
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7462, s. 287-295
  • Tidskriftsartikel (refereegranskat)abstract
    • The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
  •  
11.
  • Van Sundert, Kevin, et al. (författare)
  • When things get MESI : The Manipulation Experiments Synthesis Initiative—A coordinated effort to synthesize terrestrial global change experiments
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:7, s. 1922-1938
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.
  •  
12.
  • Ven, Arne, et al. (författare)
  • Mesh bags underestimated arbuscular mycorrhizal abundance but captured fertilization effects in a mesocosm experiment
  • 2020
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 446:1-2, s. 563-575
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Ingrowth bags are widely used to estimate mycorrhizal growth and dynamics. However, it remains unclear to what extent they reflect the surrounding soil, and how this varies with environmental conditions. Methods: We used a fertilization experiment to investigate if carbon-free mesh bags were representative of their surrounding soil. We determined AMF hyphal length density (HLD), phospholipid fatty acids (PLFA 16:1ω5) and neutral lipid fatty acids (NLFA 16:1ω5). Results: When AMF abundance in surrounding soil was high, HLD and both fatty acids were underestimated by the mesh bags. The PLFA 16:1ω5 in surrounding soil included bacterial PLFA, complicating the comparison of PLFA 16:1ω5 between mesh bags and surrounding soil. Both NLFA 16:1ω5 and HLD showed a significantly positive correlation, and fertilization effects were mostly similar for mesh bags and surrounding soil. Conclusions: Although carbon-free mesh bags can underestimate AMF abundance in soils, they represent a useful method to compare patterns in AMF abundance across environmental gradients and can be particularly useful in combination with the use of stable isotope tracers for unraveling patterns in AMF growth. NLFA 16:1ω5 appeared a more accurate measure for AMF than PLFA 16:1ω5 because the latter included bacterial PLFA.
  •  
13.
  • Ven, Arne, et al. (författare)
  • Phosphorus addition increased carbon partitioning to autotrophic respiration but not to biomass production in an experiment with Zea mays
  • 2020
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 43:9, s. 2054-2065
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant carbon (C) partitioning—the relative use of photosynthates for biomass production, respiration, and other plant functions—is a key but poorly understood ecosystem process. In an experiment with Zea mays, with or without arbuscular mycorrhizal fungi (AMF), we investigated the effect of phosphorus (P) fertilization and AMF on plant C partitioning. Based on earlier studies, we expected C partitioning to biomass production (i.e., biomass production efficiency; BPE) to increase with increasing P addition due to reduced C partitioning to AMF. However, although plant growth was clearly stimulated by P addition, BPE did not increase. Instead, C partitioning to autotrophic respiration increased. These results contrasted with our expectations and with a previous experiment in the same set-up where P addition increased BPE while no effect on autotropic respiration was found. The comparison of both experiments suggests a key role for AMF in explaining these contrasts. Whereas in the previous experiment substantial C partitioning to AMF reduced BPE under low P, in the current experiment, C partitioning to AMF was too low to directly influence BPE. Our results illustrate the complex influence of nutrient availability and mycorrhizal symbiosis on plant C partitioning.
  •  
14.
  • Verlinden, Melanie S., et al. (författare)
  • Favorable effect of mycorrhizae on biomass production efficiency exceeds their carbon cost in a fertilization experiment
  • 2018
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 99:11, s. 2525-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass production efficiency (BPE), the ratio of biomass production to photosynthesis, varies greatly among ecosystems and typically increases with increasing nutrient availability. Reduced carbon partitioning to mycorrhizal fungi (i.e., per unit photosynthesis) is the hypothesized underlying mechanism, as mycorrhizal abundance and plant dependence on these symbionts typically decrease with increasing nutrient availability. In a mesocosm experiment with Zea mays, we investigated the effect of nitrogen (N) and phosphorus (P) addition and of mycorrhizal inoculation on BPE. Photosynthesis and respiration were measured at mesocosm scale and at leaf scale. The growth of arbuscular mycorrhizal fungi (AMF) was assessed with ingrowth bags while also making use of the difference in δ13C between C4 plants and C3 soil. Mesocosms without AMF, that is, with pasteurized soil, were used to further explore the role of AMF. Plant growth, photosynthesis, and BPE were positively affected by P, but not by N addition. AMF biomass also was slightly higher under P addition, but carbon partitioning to AMF was significantly lower than without P addition. Interestingly, in the absence of AMF, plants that did not receive P died prematurely. Our study confirmed the hypothesis that BPE increases with increasing nutrient availability, and that carbon partitioning to AMF plays a key role in this nutrient effect. The comparison of inoculated vs. pasteurized mesocosms further suggested a lower carbon cost of nutrient uptake via AMF than via other mechanisms under nutrient rich conditions.
  •  
15.
  • Vicca, Sara, et al. (författare)
  • Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:3, s. 711-726
  • Tidskriftsartikel (refereegranskat)abstract
    • A number of negative emission technologies (NETs) have been proposed to actively remove CO2 from the atmosphere, with enhanced silicate weathering (ESW) as a relatively new NET with considerable climate change mitigation potential. Models calibrated to ESW rates in lab experiments estimate the global potential for inorganic carbon sequestration by ESW at about 0.5-5 Gt CO2 year(-1), suggesting ESW could be an important component of the future NETs mix. In real soils, however, weathering rates may differ strongly from lab conditions. Research on natural weathering has shown that biota such as plants, microbes, and macro-invertebrates can strongly affect weathering rates, but biotic effects were excluded from most ESW lab assessments. Moreover, ESW may alter soil organic carbon sequestration and greenhouse gas emissions by influencing physicochemical and biological processes, which holds the potential to perpetuate even larger negative emissions. Here, we argue that it is likely that the climate change mitigation effect of ESW will be governed by biological processes, emphasizing the need to put these processes on the agenda of this emerging research field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vicca, Sara (15)
Janssens, Ivan A. (8)
Verbruggen, Erik (7)
Peñuelas, Josep (6)
Wallander, Håkan (5)
Bahn, Michael (5)
visa fler...
Sardans, Jordi (4)
Ostonen, Ivika (3)
Ciais, Philippe (3)
Richter, Andreas (3)
Struyf, Eric (3)
Seneviratne, Sonia I ... (3)
Sigurdsson, Bjarni D ... (3)
Sigurdsson, Páll (3)
Hagens, Mathilde (3)
Van Groenigen, Jan W ... (3)
Hartmann, Jens (3)
Neubeck, Anna, 1974- (3)
Fuchslueger, Lucia (3)
Leblans, Niki I.W. (3)
Marañón-Jiménez, Sar ... (3)
Guenet, Bertrand (2)
Reichstein, Markus (2)
Olsson, Pål Axel (2)
Beer, Christian (2)
Thonicke, Kirsten (2)
Buchmann, Nina (2)
Weedon, James T. (2)
Poeplau, Christopher (2)
Walker, Tom W.N. (2)
Rammig, Anja (2)
Zscheischler, Jakob (2)
Calogiuri, Tullia (2)
Corbett, Thomas (2)
Niron, Harun (2)
Rieder, Lukas (2)
Van Tendeloo, Michie ... (2)
Vlaeminck, Siegfried ... (2)
Vidal, Alix (2)
Smith, Pete (2)
Fang, Chao (2)
Mahecha, Miguel D. (2)
Oddsdóttir, Edda S. (2)
Verbrigghe, Niel (2)
Meeran, Kathiravan (2)
Van der Velde, Marij ... (2)
Walz, Ariane (2)
Wattenbach, Martin (2)
Soong, Jennifer L. (2)
Gunnarsdóttir, Gunnh ... (2)
visa färre...
Lärosäte
Uppsala universitet (5)
Lunds universitet (5)
Umeå universitet (2)
Stockholms universitet (2)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy