SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vicenzi Silvia) "

Sökning: WFRF:(Vicenzi Silvia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kennedy, Beatrice, et al. (författare)
  • Oral Microbiota Development in Early Childhood
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Early life determinants of the oral microbiota have not been thoroughly elucidated. We studied the association of birth and early childhood characteristics with oral microbiota composition using 16 S ribosomal RNA (rRNA) gene sequencing in a population-based Swedish cohort of 59 children sampled at 6, 12 and 24 months of age. Repeated-measurement regression models adjusted for potential confounders confirmed and expanded previous knowledge about the profound shift of oral microbiota composition in early life. These alterations included increased alpha diversity, decreased beta diversity and alteration of bacterial composition with changes in relative abundance of 14 of the 20 most common operational taxonomic units (OTUs). We also found that birth characteristics, breastfeeding and antibiotic use were associated with overall phyla distribution and/or with the relative abundance of specific OTUs. Further, we detected a novel link between morning salivary cortisol level, a physiological marker of neuroendocrine activity and stress, and overall phyla distribution as well as with decreased abundance of the most common OTU mapped to the Streptococcaceae family. In conclusion, a major part of the maturation of the oral microbiome occurs during the first two years of life, and this development may be influenced by early life circumstances.
  •  
2.
  • von der Heyde, Benedikt, et al. (författare)
  • Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 mu M ivabradine-an open channel blocker of HCNs-for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).
  •  
3.
  • von der Heyde, Benedikt, et al. (författare)
  • Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo, image-based, large-scale genetic screen in zebrafish
  • Tidskriftsartikel (refereegranskat)abstract
    • A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV) in data from 53,174 individuals. However, functional follow-up experiments - aiming to identify and characterize causal genes in these loci - have not yet been performed. We developed an image- and CRISPR-Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos and larvae. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in fertilized eggs from fish that transgenically express GFP on smooth muscle cells (Tg(acta2:GFP)), to visualize the beating heart using a fluorescence microscope. An automated analysis of repeated 30s recordings of 381 live zebrafish atria at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and kiaa1755); heart rate (rgs6 and hcn4) and the risk of sinoatrial pauses and arrests (hcn4). Hence, our screen confirmed the role of established genes for heart rate (rgs6 and hcn4), and highlighted a novel gene implicated in HRV (kiaa1755).
  •  
4.
  • Wernroth, Lisa, et al. (författare)
  • Development of gut microbiota during the first 2 years of life
  • 2022
  • Ingår i: Scientific Reports. - : Nature Portfolio. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although development of microbiota in childhood has been linked to chronic immune-related conditions, early childhood determinants of microbiota development have not been fully elucidated. We used 16S rRNA sequencing to analyse faecal and saliva samples from 83 children at four time-points during their first 2 years of life and from their mothers. Our findings confirm that gut microbiota in infants have low diversity and highlight that some properties are shared with the oral microbiota, although inter-individual differences are present. A considerable convergence in gut microbiota composition was noted across the first 2 years of life, towards a more diverse adult-like microbiota. Mode of delivery accounted for some of the inter-individual variation in early childhood, but with a pronounced attenuation over time. Our study extends previous research with further characterization of the major shift in gut microbiota composition during the first 2 years of life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy