SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vijverberg Susanne) "

Sökning: WFRF:(Vijverberg Susanne)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Aziz, Mahmoud I., et al. (författare)
  • A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes
  • 2022
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-omics approach revealed the underlying biological pathways in the microbiome-driven severe asthma phenotypes. This may help to elucidate new leads for treatment development, particularly for the therapeutically challenging neutrophilic asthma.
  •  
2.
  • Diamant, Zuzana, et al. (författare)
  • Toward clinically applicable biomarkers for asthma : An EAACI position paper
  • 2019
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538 .- 1398-9995. ; 74:10, s. 1835-1851
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
  •  
3.
  • Eguiluz-Gracia, Ibon, et al. (författare)
  • The need for clean air : The way air pollution and climate change affect allergic rhinitis and asthma
  • 2020
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538. ; 75:9, s. 2170-2184
  • Forskningsöversikt (refereegranskat)abstract
    • Air pollution and climate change have a significant impact on human health and well-being and contribute to the onset and aggravation of allergic rhinitis and asthma among other chronic respiratory diseases. In Westernized countries, households have experienced a process of increasing insulation and individuals tend to spend most of their time indoors. These sequelae implicate a high exposure to indoor allergens (house dust mites, pets, molds, etc), tobacco smoke, and other pollutants, which have an impact on respiratory health. Outdoor air pollution derived from traffic and other human activities not only has a direct negative effect on human health but also enhances the allergenicity of some plants and contributes to global warming. Climate change modifies the availability and distribution of plant- and fungal-derived allergens and increases the frequency of extreme climate events. This review summarizes the effects of indoor air pollution, outdoor air pollution, and subsequent climate change on asthma and allergic rhinitis in children and adults and addresses the policy adjustments and lifestyle changes required to mitigate their deleterious effects.
  •  
4.
  • Jesenak, Milos, et al. (författare)
  • Eosinophils—from cradle to grave
  • 2023
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - 0105-4538. ; 78:12, s. 3077-3102
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
  •  
5.
  • Ulrik, Charlotte Suppli, et al. (författare)
  • Precision medicine and treatable traits in chronic airway diseases - where do we stand?
  • 2020
  • Ingår i: Current Opinion in Pulmonary Medicine. - 1531-6971. ; 26:1, s. 33-39
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE OF REVIEW: To provide an update on the implementation of precision medicine, based on treatable traits and mechanisms, in the daily clinical management of chronic airways diseases. RECENT FINDINGS: Recent insights into the complex and heterogeneous nature of chronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma identified several clinical and inflammatory phenotypes. This shifted the management focus of these diseases away from the prototypic disease labels and paved the way for developing novel targeted therapies.The concept of precision medicine aims to link the right patient to the right treatment, while minimizing the risk of adverse effects. Several treatable features ('treatable traits') have now been identified for these chronic airway diseases, including pulmonary, extra-pulmonary, and psychological/lifestyle/environmental traits. As the next step, innovative detection techniques should clarify underlying mechanisms and molecular pathways of these treatable traits and novel reliable point-of-care (composite) biomarkers to help predict responders to targeted therapies must be developed. SUMMARY: Precision medicine links the right patient to the right treatment. Identification of treatable traits in asthma and COPD will help optimize the treatment approach in these heterogeneous diseases. Furthermore, in-depth identification of underlying molecular pathways and reliable biomarkers in chronic airways diseases to guide targeted treatment in individual patients is in progress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy