SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vilalta N) "

Sökning: WFRF:(Vilalta N)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poyatos, R., et al. (författare)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
2.
  •  
3.
  • Pujol-Moix, N, et al. (författare)
  • Influence of ABO Locus on PFA-100 Collagen-ADP Closure Time Is Not Totally Dependent on the Von Willebrand Factor. Results of a GWAS on GAIT-2 Project Phenotypes
  • 2019
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:13
  • Tidskriftsartikel (refereegranskat)abstract
    • (1) Background: In a previous study, we found that two phenotypes related to platelet reactivity, measured with the PFA-100 system, were highly heritable. The aim of the present study was to identify genetic determinants that influence the variability of these phenotypes: closure time of collagen-ADP (Col-ADP) and of collagen-epinephrine (Col-Epi). (2) Methods: As part of the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia (2) Project, 935 individuals from 35 large Spanish families were studied. A genome-wide association study (GWAS) with ≈ 10 M single nucleotide polymorphisms (SNPs) was carried out with Col-ADP and Col-Epi phenotypes. (3) Results: The study yielded significant genetic signals that mapped to the ABO locus. After adjusting both phenotypes for the ABO genotype, these signals disappeared. After adjusting for von Willebrand factor (VWF) or for coagulation factor VIII (FVIII), the significant signals disappeared totally for Col-Epi phenotype but only partially for Col-ADP phenotype. (4) Conclusion: Our results suggest that the ABO locus exerts the main genetic influence on PFA-100 phenotypes. However, while the effect of the ABO locus on Col-Epi phenotype is mediated through VWF and/or FVIII, the effect of the ABO locus on Col-ADP phenotype is partly produced through VWF and/or FVIII, and partly through other mechanisms.
  •  
4.
  •  
5.
  •  
6.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
7.
  •  
8.
  • Poyatos, R., et al. (författare)
  • Plasticity in hydraulic architecture of Scots pine across Eurasia
  • 2007
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 153:2, s. 245-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Widespread tree species must show physiological and structural plasticity to deal with contrasting water balance conditions. To investigate these plasticity mechanisms, a meta-analysis of Pinus sylvestris L. sap flow and its response to environmental variables was conducted using datasets from across its whole geographical range. For each site, a Jarvis-type, multiplicative model was used to fit the relationship between sap flow and photosynthetically active radiation, vapour pressure deficit (D) and soil moisture deficit (SMD); and a logarithmic function was used to characterize the response of stomatal conductance (G(s)) to D. The fitted parameters of those models were regressed against climatic variables to study the acclimation of Scots pine to dry/warm conditions. The absolute value of sap flow and its sensitivity to D and SMD increased with the average summer evaporative demand. However, relative sensitivity of G(s) to D (m/G(s,ref) where m is the slope and G(s,ref) is reference G(s) at D = 1 kPa) did not increase with evaporative demand across populations, and transpiration per unit leaf area at a given D increased accordingly in drier/warmer climates. This physiological plasticity was linked to the previously reported climate- and size-related structural acclimation of leaf to sapwood area ratios. G(s,ref), and its absolute sensitivity to D (m), tended to decrease with age/height of the trees as previously reported for other pine species. It is unclear why Scots pines have higher transpiration rates at drier/warmer sites, at the expense of lower water-use efficiency. In any case, our results suggest that these structural adjustments may not be enough to prevent lower xylem tensions at the driest sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy