SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vissing Kristian) "

Sökning: WFRF:(Vissing Kristian)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sieljacks, Peter, et al. (författare)
  • Muscle damage and repeated bout effect following blood flow restricted exercise
  • 2016
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 116:3, s. 513-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). Methods Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. Results The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. Conclusion We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
  •  
2.
  • Gejl, Kasper D., et al. (författare)
  • Changes in metabolism but not myocellular signaling by training with CHO-restriction in endurance athletes
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate (CHO) restricted training has been shown to increase the acute training response, whereas less is known about the acute effects after repeated CHO restricted training. On two occasions, the acute responses to CHO restriction were examined in endurance athletes. Study 1 examined cellular signaling and metabolic responses after seven training-days including CHO manipulation (n = 16). The protocol consisted of 1 h high-intensity cycling, followed by 7 h recovery, and 2 h of moderate-intensity exercise (120SS). Athletes were randomly assigned to low (LCHO: 80 g) or high (HCHO: 415 g) CHO during recovery and the 120SS. Study 2 examined unaccustomed exposure to the same training protocol (n = 12). In Study 1, muscle biopsies were obtained at rest and 1 h after 120SS, and blood samples drawn during the 120SS. In Study 2, substrate oxidation and plasma glucagon were determined. In Study 1, plasma insulin and proinsulin C-peptide were higher during the 120SS in HCHO compared to LCHO (insulin: 0 min: +37%; 60 min: +135%; 120 min: +357%, P = 0.05; proinsulin C-peptide: 0 min: +32%; 60 min: +52%; 120 min: +79%, P = 0.02), whereas plasma cholesterol was higher in LCHO (+15-17%, P = 0.03). Myocellular signaling did not differ between groups. p-AMPK and p-ACC were increased after 120SS (+35%, P = 0.03; +59%, P = 0.0004, respectively), with no alterations in p-p38, p-53, or p-CREB. In Study 2, glucagon and fat oxidation were higher in LCHO compared to HCHO during the 120SS (+26-40%, P = 0.03; +44-76%, P = 0.01 respectively). In conclusion, the clear respiratory and hematological effects of CHO restricted training were not translated into superior myocellular signaling after accustomization to CHO restriction.
  •  
3.
  • Gejl, Kasper Degn, et al. (författare)
  • No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes
  • 2017
  • Ingår i: Medicine & Science in Sports & Exercise. - 0195-9131 .- 1530-0315. ; 49:12, s. 2486-2497
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The present study investigated the effects of periodic carbohydrate (CHO) restriction on endurance performance and metabolic markers in elite endurance athletes. Methods Twenty-six male elite endurance athletes (maximal oxygen consumption (VO2max), 65.0 mL O(2)kg(-1)min(-1)) completed 4 wk of regular endurance training while being matched and randomized into two groups training with (low) or without (high) CHO manipulation 3 dwk(-1). The CHO manipulation days consisted of a 1-h high-intensity bike session in the morning, recovery for 7 h while consuming isocaloric diets containing either high CHO (414 2.4 g) or low CHO (79.5 1.0 g), and a 2-h moderate bike session in the afternoon with or without CHO. VO2max, maximal fat oxidation, and power output during a 30-min time trial (TT) were determined before and after the training period. The TT was undertaken after 90 min of intermittent exercise with CHO provision before the training period and both CHO and placebo after the training period. Muscle biopsies were analyzed for glycogen, citrate synthase (CS) and -hydroxyacyl-coenzyme A dehydrogenase (HAD) activity, carnitine palmitoyltransferase (CPT1b), and phosphorylated acetyl-CoA carboxylase (pACC). Results The training effects were similar in both groups for all parameters. On average, VO2max and power output during the 30-min TT increased by 5% +/- 1% (P < 0.05) and TT performance was similar after CHO and placebo during the preload phase. Training promoted overall increases in glycogen content (18% +/- 5%), CS activity (11% +/- 5%), and pACC (38% +/- 19%; P < 0.05) with no differences between groups. HAD activity and CPT1b protein content remained unchanged. Conclusions Superimposing periodic CHO restriction to 4 wk of regular endurance training had no superior effects on performance and muscle adaptations in elite endurance athletes.
  •  
4.
  • Paulsen, Gøran, et al. (författare)
  • Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans
  • 2007
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 293:2, s. R844-R853
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study the stress protein response to unaccustomed maximal eccentric exercise in humans was investigated. Eleven healthy males performed 300 maximal eccentric actions with the quadriceps muscle. Biopsies from vastus lateralis were collected at 30 min and 4, 8, 24, 96, and 168 h after exercise. Cellular regulation and localization of heat shock protein (HSP) 27, alpha B-crystallin, and HSP70 were analyzed by immunohistochemistry, ELISA technique, and Western blotting. Additionally, mRNA levels of HSP27, alpha B-crystallin, and HSP70 were quantified by Northern blotting. After exercise (30 min), 81 +/- 8% of the myofibers showed strong HSP27 staining (P < 0.01) that gradually decreased during the following week. alpha B-Crystallin mimicked the changes observed in HSP27. After exercise (30 min), the ELISA analysis showed a 49 +/- 13% reduction of the HSP27 level in the cytosolic fraction (P < 0.01), whereas Western blotting revealed a 15-fold increase of the HSP27 level in the myofibrillar fraction (P < 0.01). The cytosolic HSP70 level increased to 203 +/- 37% of the control level 24 h after exercise (P < 0.05). After 4 days, myofibrillar-bound HSP70 had increased approximately 10-fold (P < 0.01) and was accompanied by strong staining on cross sections. mRNA levels of HSP27, alpha B-crystallin, and HSP70 were all elevated the first day after exercise (P < 0.01); HSP70 mRNA showed the largest increase (20-fold at 8 h). HSP27 and alpha B-crystallin seemed to respond immediately to maximal eccentric exercise by binding to cytoskeletal/myofibrillar proteins, probably to function as stabilizers of disrupted myofibrillar structures. Later, mRNA and total HSP protein levels, especially HSP70, increased, indicating that HSPs play a role in skeletal muscle recovery and remodeling/adaptation processes to high-force exercise
  •  
5.
  • Sieljacks, Peter, et al. (författare)
  • Body position influences arterial occlusion pressure: implications for the standardization of pressure during blood flow restricted exercise
  • 2018
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 118:2, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Springer-Verlag GmbH Germany, part of Springer Nature Purpose: Arterial occlusion pressure (AOP) measured in a supine position is often used to set cuff pressures for blood flow restricted exercise (BFRE). However, supine AOP may not reflect seated or standing AOP, thus potentially influencing the degree of occlusion. The primary aim of the study was to investigate the effect of body position on AOP. A secondary aim was to investigate predictors of AOP using wide and narrow cuffs. Methods: Twenty-four subjects underwent measurements of thigh circumference, skinfold and blood pressure, followed by assessments of thigh AOP in supine and seated positions with a wide and a narrow cuff, respectively, using Doppler ultrasound. Results: In the supine position, AOP was 148 ± 19 and 348 ± 94 mmHg with the wide and narrow cuff, respectively. This increased to 177 ± 20 and 409 ± 101 mmHg in the seated position, with correlations between supine and seated AOP of R 2 = 0.81 and R 2 = 0.50 for the wide and narrow cuff, respectively. For both cuff widths, thigh circumference constituted the strongest predictor of AOP, with diastolic blood pressure explaining additional variance with the wide cuff. The predictive strength of these variables did not differ between body positions. Conclusion: Our results indicate that body position strongly influences lower limb AOP, especially with narrow cuffs, yielding very high AOP (≥ 500–600 mmHg) in some subjects. This should be taken into account in the standardization of cuff pressures used during BFRE to better control the physiological effects of BFRE.
  •  
6.
  • Sieljacks, Peter, et al. (författare)
  • Non-failure blood flow restricted exercise induces similar muscle adaptations and less discomfort than failure protocols.
  • 2019
  • Ingår i: Scandinavian journal of medicine & science in sports. - : Wiley. - 1600-0838 .- 0905-7188. ; 29:3, s. 336-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-load blood flow restricted resistance exercise (BFRE) performed to volitional failure is suggested to constitute an effective method for producing increases in muscle size and function. However, failure BFRE may entail high levels of perceived exertion, discomfort and/or delayed onset of muscle soreness (DOMS). The aim of the study was to compare BFRE performed to volitional failure (F-BFRE) vs non-failure BFRE (NF-BFRE) on changes in muscle size, function and perceptual responses. Fourteen young untrained males had one leg randomized to knee-extension F-BFRE while the contralateral leg performed NF-BFRE. The training consisted of 22 training bouts over an 8-week period. Whole-muscle cross-sectional area (CSA) of quadriceps components, muscle function, and DOMS were assessed before and after the training period. Perceived exertion and discomfort were registered during each training bout. Both F-BFRE and NF-BFRE produced regional increases in muscle CSA in the range of; quadriceps (2.5-3.8%), vastus lateralis (8.1-8.5%), and rectus femoris (7.9-25.0%). All without differences between leg. Muscle strength (6.8-11.5%) and strength-endurance capacity (13.9-18.6%) also increased to a similar degree in both legs. Less perceived exertion, discomfort and DOMS were reported with NF-BFRE compared to F-BFRE. In conclusion, non-failure BFRE enable increases in muscle size and muscle function, while involving reduced perceptions of exertion, discomfort and DOMS. Non-failure BFRE may be a more feasible approach in clinical settings. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy